CAREER: Optoelectronic Local Probes Measuring Microstructural Degradation and Recovery Under Accelerated Environmental Stressors

职业:光电局部探针测量加速环境压力下的微观结构退化和恢复

基本信息

  • 批准号:
    2048152
  • 负责人:
  • 金额:
    $ 58.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Nontechnical Abstract:Defects in semiconductors play a critical role in the performance and stability of modern electronics. The ability to interrogate such defects is therefore of great importance in producing reliable, high-performance electronics that underly the modern economy. Existing methods often measure properties without sufficient resolution to resolve defects on the length scales that they occur. Thus, existing methods provide limited information about the unique local properties. This CAREER project aims to establish an innovative measurement platform that can directly observe the carrier dynamics of microstructured optoelectronic devices. Solar cells based on metal halide perovskites will be the focus of this work. Such devices have remarkable performance, but poor stability, posing a basic challenge for real-world applications. Defect chemistry, ion migration, and microstructural characteristics have all been considered as culprits for the poor stability, but the underlying physical mechanisms are not fully understood. The PI’s research team will use local optical and electrical probes under controlled environmental conditions to study the microstructure of perovskites and elucidate reasons for performance degradation. This fundamental understanding will help to guide the rational design and synthesis of perovskites for robust and reliable solar cells. The PI’s research vision is integrated with an educational plan that aims to generate curiosity and excitement for solar energy and electron microscopy for a broad range of students, with a particular focus on young women students in Utah. The PI will involve undergraduate and graduate students in research and promote the participation of students from underrepresented groups in STEM. An interactive website with streaming videos and educational resources will assist in disseminating the research findings to the general public in the US and abroad.Technical Abstract:Metal halide perovskites are ideally suited for photovoltaic applications, particularly solar cells. This novel class of semiconductors features low-cost processing, rich chemical and structural diversity, tunable bandgaps, and unique defect tolerance and “self-healing” capabilities. Despite considerable efforts, the underlying physical mechanisms for the inferior stability of perovskite solar cells are not fully understood. Many established characterization techniques measure the averaged properties, on a length scale far greater than that of the electronic and structural inhomogeneity, which is on the order of the typical grain size ( 1 micrometer). To tackle this challenge, the PI uses an innovative measurement platform that can directly observe the degradation kinetics of perovskites at the level of individual microstructures, surfaces, and interfaces in real-time. By integrating optoelectronic probes (e.g., low-energy electron beam, near-field photon source) with isolated/mixed environmental stressors in a scanning electron microscope system, the research team aims to visualize the local defects (e.g., mobile ions) and charge carrier dynamics during deterioration and recovery in the perovskites. In addition to the in-situ electrical and optical imaging, the team is designing and fabricating small nanocontacts on individual grains and grain boundaries for quantitative analysis of ion migration and local carrier transport within the microstructures under both individual and mixed stressors. The research team will apply 2D/3D analytical and numerical models based on modified Poisson drift and diffusion to analyze the quantitative datasets collected with nanocontacts. This CAREER research will provide comprehensive knowledge on the “performance-microstructure-stressor” relationship of single-junction perovskite solar cells and general guidelines to mitigate the environmental deterioration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:半导体中的缺陷对现代电子产品的性能和稳定性起着至关重要的作用。因此,询问这些缺陷的能力对于生产作为现代经济基础的可靠、高性能电子产品非常重要。现有的方法通常在没有足够分辨率的情况下测量属性,以解决它们出现的长度尺度上的缺陷。因此,现有的方法提供了有限的信息的独特的本地属性。该CAREER项目旨在建立一个创新的测量平台,可以直接观察微结构光电器件的载流子动力学。基于金属卤化物钙钛矿的太阳能电池将是这项工作的重点。这些设备具有出色的性能,但稳定性差,对现实世界的应用构成了基本挑战。缺陷化学、离子迁移和微观结构特征都被认为是稳定性差的罪魁祸首,但其潜在的物理机制尚未完全理解。PI的研究团队将在受控的环境条件下使用当地的光学和电学探针来研究钙钛矿的微观结构,并阐明性能下降的原因。这一基本认识将有助于指导钙钛矿的合理设计和合成,以获得坚固可靠的太阳能电池。PI的研究愿景与教育计划相结合,旨在为广大学生产生对太阳能和电子显微镜的好奇心和兴奋感,特别关注犹他州的年轻女学生。PI将让本科生和研究生参与研究,并促进来自STEM代表性不足群体的学生参与。一个交互式网站与流媒体视频和教育资源将有助于传播的研究成果,以一般公众在美国和海外。技术摘要:金属卤化物钙钛矿是理想的光伏应用,特别是太阳能电池。这种新型半导体具有低成本加工,丰富的化学和结构多样性,可调带隙,以及独特的缺陷容限和“自我修复”能力。尽管付出了相当大的努力,但钙钛矿太阳能电池稳定性较差的潜在物理机制尚未完全理解。许多已建立的表征技术测量的平均性能,在远大于电子和结构的不均匀性,这是典型的晶粒尺寸(1微米)的顺序的长度尺度。为了应对这一挑战,PI使用了一个创新的测量平台,可以在单个微结构、表面和界面的水平上实时直接观察钙钛矿的降解动力学。通过集成光电探针(例如,低能电子束、近场光子源)与扫描电子显微镜系统中的隔离/混合环境应激源,研究小组旨在可视化局部缺陷(例如,移动的离子)和钙钛矿中劣化和恢复期间的电荷载流子动力学。除了原位电学和光学成像外,该团队还在单个晶粒和晶界上设计和制造小型纳米接触,用于定量分析单个和混合应力下微结构内的离子迁移和局部载流子传输。研究团队将应用基于修改后的泊松漂移和扩散的2D/3D分析和数值模型来分析使用纳米接触收集的定量数据集。这项CAREER研究将提供关于单结钙钛矿太阳能电池“性能-微观结构-应力源”关系的全面知识,以及减轻环境恶化的一般指导方针。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subsurface Characteristics of Metal-Halide Perovskites Polished by an Argon Ion Beam
  • DOI:
    10.1021/acs.jpcc.2c09122
  • 发表时间:
    2023-04-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hsu,Yu-Lin;Li,Chongwen;Yoon,Heayoung P.
  • 通讯作者:
    Yoon,Heayoung P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heayoung Yoon其他文献

Heayoung Yoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Discovery Projects
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Continuing Grant
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Discovery Early Career Researcher Award
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Standard Grant
Deposition of novel transparent conducting thin films with unusual optoelectronic properties
具有不寻常光电特性的新型透明导电薄膜的沉积
  • 批准号:
    2888596
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Studentship
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了