CAREER: Chip-Scale, Field-Resolved Detection of Mid-Infrared Light
职业:中红外光的芯片级场分辨检测
基本信息
- 批准号:2048263
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The mid-infrared portion of the electromagnetic spectrum is of fundamental interest to biological, chemical, and physical science. The mid-infrared (MIR) consists of electromagnetic waves with wavelengths from around 3 to 20 millionths of a meter. In this spectral region, virtually all molecules exhibit absorption resonances, and these resonances constitute molecular fingerprints. Accordingly, for around the past hundred years, MIR light has been used for sensing, with recent applications ranging from environmental monitoring to protein characterization. In the past few decades, there have been revolutionary advances in ultrafast MIR laser sources, that is, laser systems producing brief pulses of MIR light. Such ultrafast MIR sources offer new, exciting opportunities for enhancing MIR sensing technologies. The first goal of this project is to develop novel detectors specifically tailored for ultrafast MIR laser sources. These detectors will enable the measurement of light fields of MIR laser pulses in the time-domain. Such field-resolving detectors will enable MIR sensing with improved resolution, as well as provide novel capabilities to study the dynamic behavior of MIR absorption resonances. The second goal of this project is to promote engineering education engineering student retention. Towards this end, online educational content will be developed for graduate students working with ultrafast laser technology; novel educational strategies emphasizing the “we do” component of the gradual release of responsibility pedagogical model will be explored at the undergraduate level; and outreach events, promoting engineering and photonics, will be held for local students at the K-12 level. At all levels, the underlying themes of the research program will be integrated into the educational efforts. Mid-infrared (MIR) spectroscopy is ubiquitous in sensing applications across virtually all scientific disciplines. MIR spectroscopic tools primarily rely on frequency-domain techniques: in a MIR spectroscopic system, infrared light illuminates a sample, and the frequency spectrum of the transmitted light is measured. Absorption resonances are then extracted from the measured spectrum, and information about the sample is thereby obtained. In contrast to conventional MIR spectroscopy, at longer wavelengths, ultrafast laser systems have enabled time-domain spectroscopic techniques. For instance, in terahertz time-domain spectroscopy, terahertz waves irradiate a sample, and ultrafast laser pulses are used to measure the time-dependent electric field of the transmitted terahertz radiation. Such field-resolved measurements can provide unique, dynamical information as well as dramatically improved resolution compared to frequency-domain techniques. The goal of this project is to extend such time-domain, field-resolved detection to chip-scale platforms operating in the MIR. Specifically, in this project, chip-scale, optical detectors capable of resolving the instantaneous electric field of incident ultrafast MIR laser pulses will be developed. These chip-scale detectors will leverage sub-optical-cycle, strong-field photoemission currents from nanoscale metallic antennas to sample MIR laser pulses in the time-domain with exceptional resolution. These field-resolving detectors will provide revolutionary capabilities for future MIR spectroscopic systems and impact a broad range of scientific, medical, and industrial applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电磁波谱的中红外部分是生物、化学和物理科学的基本兴趣。中红外(MIR)由波长约为3至20百万分之一米的电磁波组成。在该光谱区域中,几乎所有分子都表现出吸收共振,并且这些共振构成分子指纹。因此,在过去的一百年里,MIR光一直用于传感,最近的应用范围从环境监测到蛋白质表征。在过去的几十年中,在超快MIR激光源(即,产生MIR光的短脉冲的激光系统)方面取得了革命性的进展。这种超快MIR源为增强MIR感测技术提供了新的令人兴奋的机会。该项目的第一个目标是开发专为超快MIR激光源量身定制的新型探测器。这些探测器将能够在时域中测量MIR激光脉冲的光场。这种场分辨探测器将使MIR传感具有更高的分辨率,并提供新的能力来研究MIR吸收共振的动态行为。该项目的第二个目标是促进工程教育工程学生的保留。为此,将为从事超快激光技术工作的研究生开发在线教育内容;将在本科一级探索新的教育战略,强调逐步释放责任教学模式中的“我们愿意”部分;将为当地K-12级学生举办推广工程和光子学的外联活动。在各级,研究方案的基本主题将纳入教育工作。中红外(MIR)光谱在几乎所有科学学科的传感应用中无处不在。MIR光谱工具主要依赖于频域技术:在MIR光谱系统中,红外光照射样品,并测量透射光的频谱。然后从测量的光谱中提取吸收共振,从而获得关于样品的信息。与传统的MIR光谱相比,在更长的波长下,超快激光系统使时域光谱技术成为可能。例如,在太赫兹时域光谱学中,太赫兹波照射样品,并且超快激光脉冲用于测量透射的太赫兹辐射的时间相关电场。这种场分辨测量可以提供独特的动态信息,以及与频域技术相比显著提高的分辨率。该项目的目标是将这种时域、场分辨检测扩展到在MIR中操作的芯片级平台。具体而言,在该项目中,将开发能够解析入射超快MIR激光脉冲的瞬时电场的芯片级光学探测器。这些芯片级探测器将利用来自纳米级金属天线的亚光周期、强场光电发射电流,以优异的分辨率在时域内对MIR激光脉冲进行采样。这些场分辨探测器将为未来的MIR光谱系统提供革命性的能力,并影响广泛的科学,医学和工业应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong-Field Effects Driven by Mid-Infrared Light in Metal-Silicon-Metal Photodiodes
金属-硅-金属光电二极管中中红外光驱动的强场效应
- DOI:10.1364/cleo_fs.2023.fth3m.5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Tianyou;Ates, Omer Emre;Putnam, William P.
- 通讯作者:Putnam, William P.
Detecting long-wave infrared in metal-silicon-metal photodiodes
检测金属硅金属光电二极管中的长波红外
- DOI:10.1117/12.3002861
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Li, Tianyou;Ates, Omer Emre;Putnam, William
- 通讯作者:Putnam, William
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Putnam其他文献
William Putnam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Putnam', 18)}}的其他基金
Collaborative Research: Quantum-Coherent Interactions between Free and Guided Electrons and Photons
合作研究:自由电子和引导电子与光子之间的量子相干相互作用
- 批准号:
2110556 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
CHIP通过泛素化修饰RIP3调控巨噬细胞
坏死性凋亡在角膜新生血管形成中的作
用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Triptonide 通过 CHIP 介导的蛋白酶体途径清
除野生型IDH1 急性髓系白血病细胞的机制
研究
- 批准号:TGY24H080029
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
TAT-CHIP 融合蛋白减轻脓毒症心功能障碍的作用及机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
维生素D受体通过CHIP/Sirt6信号通路抑制肠道成纤维细胞活化的机制研究
- 批准号:82300582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tet2缺失介导的不确定潜能的克隆性造血(CHIP)调控NLRP3/IL-1β在腹主动脉瘤发生发展中的作用和机制
- 批准号:82371594
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
黄蒲通窍胶囊调控CHIP泛素-蛋白酶体途径降解异常tau蛋白治疗阿尔茨海默病作用机制研究
- 批准号:82374553
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
衰老相关蛋白CHIP调控IRP2的分子机制及在多巴胺能神经元退行性变中的作用
- 批准号:82301787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX4/FSHR/CHIP轴维护颗粒细胞内质网蛋白质稳态在延缓卵巢功能减退中的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CHIP调控FOXN3泛素化减轻主动脉瓣钙化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
E3泛素连接酶CHIP抑制类风湿关节炎滑膜炎症的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
- 批准号:
2340405 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SBIR Phase II: Chip-Scale Optical Frequency Standards
SBIR 第二阶段:芯片级光频率标准
- 批准号:
2322392 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Cooperative Agreement
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Silicon Photonic Integrated Circuits for Chip-Scale Thermal and Cold Atom Sensors
用于芯片级热原子和冷原子传感器的硅光子集成电路
- 批准号:
2887681 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
- 批准号:
DE230100964 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
- 批准号:
10743477 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
A Chip-Scale 2-Photon Rubidium Atomic Clock
芯片级 2 光子铷原子钟
- 批准号:
EP/Y00485X/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
PIC: Navigation grade chip scale gyro enabled by weak value amplification
PIC:通过弱值放大实现的导航级芯片级陀螺仪
- 批准号:
2330328 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects
GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件
- 批准号:
2240352 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant