GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects

GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件

基本信息

  • 批准号:
    2240352
  • 负责人:
  • 金额:
    $ 40.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Large-scale parallel optical interconnects hold the key to resolving the grand challenge of enormous bandwidth requirement between on-chip cores and within multi-chip modules. Silicon photonics, which is the mostly available integrated photonic platform, must excel in energy efficiency and bandwidth density in order to meet the stringent requirement of future extreme-scale photonic interconnects. The goal of this GOALI proposal is to develop hybrid silicon-transparent conductive oxide (Si-TCO) devices, especially microring resonators including microdisks, with unprecedented electro-optic (E-O) tunability and energy efficiency for large-scale on-chip wavelength division multiplexing (WDM) optical interconnects. The proposed research is highly interdisciplinary and will impact academia, industry, and photonics community by proving a unique path to integrate highly efficient TCO materials with silicon photonics. If successful, this GOALI project will lay a solid foundation toward developing a new type of silicon photonic devices for future extreme-scale on-chip WDM optical communication. The education and outreach activities will benefit graduate, undergraduate and K-12 students, and broaden the participation of under-represented minorities and women students at OSU. This research will also promote industrial collaboration with Hewlett Packard Enterprise and AIM Photonics, and broaden the research experiences of students in science and engineering at Oregon State University (OSU).Technical: TCO materials have attracted escalating research interests in integrated photonic devices, metamaterials and metasurfaces in recent years due to the extraordinary refractive index tuning achieved either through oxygen vacancy doping or electrical gating. In addition, TCO materials can be deposited with high quality using DC- or RF-sputtering on various platforms, which also possess long-term stability. Therefore, TCO materials are fully compatible with silicon photonics and has the potential to be readily integrated with existing silicon photonic integrated circuits (PICs). This GOALI project will focus on the development of metal-oxide-semiconductor (MOS) capacitor-driven active silicon-TCO photonic devices as well as exploring the feasibility of scalable integration with existing silicon photonic platforms. The main objectives of this research include: 1) demonstrating hybrid Si-TCO micro-ring filters with extremely large E-O tuning efficiency to compensate fabrication errors and temperature variation without any thermal heater; 2) implementing an athermal on-chip 4-channel WDM transmitter module using dual-functional microring resonators, which can simultaneously function as wavelength tunable filters and high speed E-O modulators; and 3) verifying process compatibility and hybrid integration with silicon photonics for future scalable manufacturing using AIM Photonics foundry service. We expect that the electrically tunable silicon microring resonators with near-zero wavelength tuning power will replace the power-hungry thermal heaters that have been used for decades. Most importantly, we will prove that such scalable MOS-driven photonic devices can be fabricated by combining AIM Photonics passive silicon-on-insulator multi-project wafer (SOI-MPW) runs and in-house TCO processes at OSU.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模并行光互连是解决片上核之间和多芯片模块内巨大带宽需求这一巨大挑战的关键。硅光子学作为目前应用最广泛的集成光子平台,必须在能量效率和带宽密度方面出类拔萃,才能满足未来极大规模光子互连的苛刻要求。该方案的目标是开发混合硅透明导电氧化物(Si-TCO)器件,特别是包括微盘在内的微环谐振器,具有前所未有的电光(E-O)可调谐性和能源效率,用于大规模片上波分复用(WDM)光互连。拟议的研究是高度跨学科的,通过证明一条将高效TCO材料与硅光子学相结合的独特途径,将对学术界、工业界和光子界产生影响。如果成功,这一目标项目将为开发用于未来极大规模片上WDM光通信的新型硅光子器件奠定坚实的基础。教育和外联活动将使研究生、本科生和K-12学生受益,并扩大未被充分代表的少数群体和俄勒冈州州立大学女学生的参与。这项研究还将促进与惠普企业和AIM光子学的工业合作,并拓宽俄勒冈州立大学(OSU)理工科学生的研究经验。技术:TCO材料近年来在集成光子器件、超材料和超表面方面吸引了越来越多的研究兴趣,因为通过氧空位掺杂或电门控实现了非凡的折射率调节。此外,利用直流或射频溅射技术可以在不同的平台上沉积高质量的TCO材料,并且具有长期稳定性。因此,TCO材料与硅光子学完全兼容,并具有与现有硅光子集成电路(PIC)集成的潜力。该项目将专注于开发金属氧化物半导体(MOS)电容驱动的有源硅TCO光子器件,并探索与现有硅光子平台可扩展集成的可行性。这项研究的主要目标包括:1)展示具有极大电光调谐效率的混合型Si-TCO微环滤光器,以补偿制造误差和温度变化,而无需任何加热器;2)利用双功能微环谐振器实现非热片上4通道WDM发射器模块,其可同时用作波长可调谐滤光器和高速E-O调制器;以及3)验证工艺兼容性以及与硅光电子的混合集成,以便利用AIM Photonics代工服务实现未来可扩展的制造。我们预计,波长调谐功率接近于零的电调谐硅微环谐振器将取代几十年来一直使用的耗电的热加热器。最重要的是,我们将证明,这种可扩展的MOS驱动的光子器件可以通过结合AIM Photonics的无源绝缘体上硅多项目晶片(SOI-MPW)运行和俄亥俄州立大学的内部TCO工艺来制造。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gate-Tuning Silicon Microring Resonator Filters for On- chip Wavelength Division Multiplexing
用于片上波分复用的栅极调谐硅微环谐振滤波器
  • DOI:
    10.1364/cleo_si.2023.sm4p.5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsu, Wei-Che;Nujhat, Nabila;Kupp, Benjamin;Conley, John F.;Wang, Alan X.
  • 通讯作者:
    Wang, Alan X.
Integrated Photonics using Transparent Conductive Oxides
使用透明导电氧化物的集成光子学
  • DOI:
    10.1364/cleo_si.2023.sf1p.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Alan X.
  • 通讯作者:
    Wang, Alan X.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Wang其他文献

MP81-07 PENILE CARCINOMA: GENETICALLY ENGINEERED MODELS FOR NOVEL THERAPEUTICS IDENTIFICATION
  • DOI:
    10.1016/j.juro.2017.02.2533
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed Sarhan;Xiaoying Shang;Pherose Tamboli;Priya Rao;Curtis Pettaway;Alan Wang;Ronald DePinho;Xin Lu
  • 通讯作者:
    Xin Lu
Ultrafast Structured Light Architectures from THz to X-rays
从太赫兹到 X 射线的超快结构光架构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Carbajo;Tiffany Chang;Rares Fota;A. Gilevich;A. Hart;J. Hirschman;Alain Lacunza Huerta;R. Lemons;Zairui Li;Brittany Lu;Wesley Sims;Linshan Sun;Ravi Varma;Alan Wang;Hong;Hao Zhang
  • 通讯作者:
    Hao Zhang
Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, reviewers, and readers from the Scientific Editorial Board of European Radiology
放射组学研究评估 (ARISE):欧洲放射学科学编辑委员会作者、审稿人和读者的简要指南
  • DOI:
    10.1007/s00330-023-09768-w
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    B. Koçak;L. Chepelev;L. Chu;R. Cuocolo;B. Kelly;Philipp Seeböck;Y. Thian;R. V. van Hamersvelt;Alan Wang;Stuart Williams;J. Witowski;Zhongyi Zhang;D. Pinto dos Santos
  • 通讯作者:
    D. Pinto dos Santos
Combining advanced magnetic resonance imaging (MRI) with finite element (FE) analysis for characterising subject-specific injury patterns in the brain after traumatic brain injury
将先进的磁共振成像 (MRI) 与有限元 (FE) 分析相结合,用于表征创伤性脑损伤后大脑中特定受试者的损伤模式
  • DOI:
    10.1007/s00366-022-01697-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Vickie B. Shim;M. Tayebi;Eryn Kwon;S. Guild;Miriam Scadeng;D. Dubowitz;F. McBryde;S. Rosset;Alan Wang;Justin W. Fernandez;Shaofan Li;S. Holdsworth
  • 通讯作者:
    S. Holdsworth
Measuring Success, One Sensor at a Time: A Sensing Infrastructure for Longitudinal Workspace Behavior Monitoring
一次使用一个传感器衡量成功:用于纵向工作空间行为监控的传感基础设施

Alan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Wang', 18)}}的其他基金

GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects
GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件
  • 批准号:
    1927271
  • 财政年份:
    2019
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
Photonic Nose: Toward System-On-Chip Optical Gas and Odor Sensing
光子鼻:迈向片上系统光学气体和气味传感
  • 批准号:
    1707506
  • 财政年份:
    2017
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
BRIGE: Surface-Normal Plasmonic Modulator for Three-Dimensional Board-to-Board and Chip-to-Chip Optical Interconnects
BRIGE:用于三维板对板和芯片对芯片光学互连的表面法线等离子体调制器
  • 批准号:
    1342318
  • 财政年份:
    2013
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
STTR Phase II: Fully Embedded Optical Interconnects based on Optical Bus Architecture for Large Size Printed Circuit Boards
STTR第二阶段:基于大尺寸印刷电路板光总线架构的全嵌入式光互连
  • 批准号:
    0724096
  • 财政年份:
    2007
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant

相似国自然基金

一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
  • 批准号:
    20Y11910600
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
  • 批准号:
    11875146
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
  • 批准号:
    81770777
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
  • 批准号:
    81601499
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
  • 批准号:
    51505048
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
  • 批准号:
    61572084
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
  • 批准号:
    51509075
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Hybrid加速结构的理论及预制研究
  • 批准号:
    11475201
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
  • 批准号:
    41205073
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
  • 批准号:
    51205392
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Tri-Cure Hybrid Organo-Silicon Coatings for Surface Preservation
I-Corps:用于表面保护的 Tri-Cure 混合有机硅涂料
  • 批准号:
    2327701
  • 财政年份:
    2023
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
New Hybrid Silicon Reduction Process Using Hydrogen Radicals for Decarbonization
使用氢自由基脱碳的新型混合硅还原工艺
  • 批准号:
    23H01736
  • 财政年份:
    2023
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hybrid Graphene/Superconducting Optoelectronics on Silicon Photonic Crystals
硅光子晶体上的混合石墨烯/超导光电子学
  • 批准号:
    RGPIN-2017-04187
  • 财政年份:
    2021
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Discovery Grants Program - Individual
Development of hybrid system of double-sided- and tandem- interferometer for precise measurement of refractive index and its temperature dependence of silicon
开发双面和串联干涉仪混合系统,用于精确测量硅的折射率及其温度依赖性
  • 批准号:
    21K20421
  • 财政年份:
    2021
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
LEAP-HI: Manufacturing of Silicon-based Hybrid Organic-Inorganic Quantum Building Blocks
LEAP-HI:硅基杂化有机-无机量子构件的制造
  • 批准号:
    2053567
  • 财政年份:
    2021
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
Multi-functional and ultra-low-cost disposable healthcare sensors using organic-silicon hybrid circuits
使用有机硅混合电路的多功能和超低成本一次性医疗传感器
  • 批准号:
    20H04156
  • 财政年份:
    2020
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hybrid Graphene/Superconducting Optoelectronics on Silicon Photonic Crystals
硅光子晶体上的混合石墨烯/超导光电子学
  • 批准号:
    RGPIN-2017-04187
  • 财政年份:
    2020
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Discovery Grants Program - Individual
Infrared hybrid and plasmonic silicon photonic circuits
红外混合和等离子体硅光子电路
  • 批准号:
    2448444
  • 财政年份:
    2020
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Studentship
Porous Silicon Nanoparticle and Graphite Hybrid Structures for Li-Ion Battery Anodes
用于锂离子电池阳极的多孔硅纳米颗粒和石墨混合结构
  • 批准号:
    538876-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Engage Grants Program
Tailored nanostructures and thin-film-processing for temperature stable organic silicon-hybrid-modulators
用于温度稳定的有机硅混合调制器的定制纳米结构和薄膜加工
  • 批准号:
    416982273
  • 财政年份:
    2019
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了