CAREER: Robustness Verification and Certified Defense for Machine Learning Models
职业:机器学习模型的鲁棒性验证和认证防御
基本信息
- 批准号:2048280
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning models perform very well on many important tasks; however, those models are not guaranteed to be always safe due to their black-box nature. This becomes a critical challenge when deploying models into real world systems. For example, an aircraft control system has to perform a certain action when detecting a nearby intruder. A self-driving car has to recognize stop signs even under small perturbations. This project will develop a framework to verify and improve the safety of machine learning models. The proposed verification methods will be efficient and support a wide range of structures. Further, the framework can be used to train models that are guaranteed to meet some safety specifications. These functionalities will enable safe models for a much broader range of applications beyond small neural networks. The project supports education and diversity through the recruitment of a diverse team. The research results will be integrated into textbooks, courses, and outreach activities on AI safety.The goal of this project is to enable machine learning verification for more general models and to make it easily applicable to users in the application domains. To achieve this goal, we will build an automatic verification algorithm based on a convex relaxation framework. In this framework, model verification can be posed as an optimization problem, and (convex or linear) relaxations are used to get an efficient solution. By generalizing this framework to a general computational graph, we will design an automatic verification algorithm. The algorithm will run automatically for any model specified by a user, without the need of re-deriving a new verification procedure for each new model. In addition to allowing a wider range of models, the project will also enable verification of more complex semantic perturbations. The investigator will also study verification of discrete models (e.g., KNN or tree ensembles) under an optimization-based framework. Finally, the proposed research will enable training models with verifiable properties that can be applied to many real-world applications through interdisciplinary collaborations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习模型在许多重要任务上表现得非常好;然而,由于这些模型的黑箱性质,并不能保证它们总是安全的。当将模型部署到现实世界的系统中时,这成为一个关键的挑战。例如,飞机控制系统在探测到附近的入侵者时必须执行一定的动作。即使在很小的干扰下,自动驾驶汽车也必须识别停车标志。该项目将开发一个框架来验证和提高机器学习模型的安全性。所提出的验证方法将是有效的,并支持广泛的结构。此外,该框架可用于训练保证满足某些安全规范的模型。这些功能将为小型神经网络之外的更广泛应用提供安全模型。该项目通过招募多元化的团队来支持教育和多元化。研究成果将被整合到人工智能安全相关的教科书、课程和宣传活动中。该项目的目标是为更通用的模型启用机器学习验证,并使其易于应用于应用程序领域的用户。为了实现这一目标,我们将构建一个基于凸松弛框架的自动验证算法。在这个框架中,模型验证可以作为一个优化问题,并使用(凸或线性)松弛来获得有效的解决方案。通过将该框架推广到一般计算图,我们将设计一个自动验证算法。该算法将自动运行用户指定的任何模型,而无需为每个新模型重新推导新的验证程序。除了允许更广泛的模型之外,该项目还将能够验证更复杂的语义扰动。研究者还将在基于优化的框架下研究离散模型(例如,KNN或树集成)的验证。最后,提出的研究将使训练模型具有可验证的属性,可以通过跨学科合作应用于许多现实世界的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation
- DOI:10.18653/v1/2021.naacl-main.305
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Chong Zhang;Jieyu Zhao;Huan Zhang;Kai-Wei Chang;Cho-Jui Hsieh
- 通讯作者:Chong Zhang;Jieyu Zhao;Huan Zhang;Kai-Wei Chang;Cho-Jui Hsieh
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
- DOI:10.48550/arxiv.2210.12396
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Fan Yin;Yao Li;Cho-Jui Hsieh;Kai-Wei Chang
- 通讯作者:Fan Yin;Yao Li;Cho-Jui Hsieh;Kai-Wei Chang
On the Transferability of Adversarial Attacks against Neural Text Classifier
- DOI:10.18653/v1/2021.emnlp-main.121
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Liping Yuan;Xiaoqing Zheng;Yi Zhou;Cho-Jui Hsieh;Kai-Wei Chang
- 通讯作者:Liping Yuan;Xiaoqing Zheng;Yi Zhou;Cho-Jui Hsieh;Kai-Wei Chang
Robust Lipschitz Bandits to Adversarial Corruptions
- DOI:10.48550/arxiv.2305.18543
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Yue Kang;Cho-Jui Hsieh;T. C. Lee
- 通讯作者:Yue Kang;Cho-Jui Hsieh;T. C. Lee
Towards Robustness Certification Against Universal Perturbations
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yi Zeng;Zhouxing Shi;Ming Jin;Feiyang Kang;L. Lyu;Cho-Jui Hsieh;R. Jia
- 通讯作者:Yi Zeng;Zhouxing Shi;Ming Jin;Feiyang Kang;L. Lyu;Cho-Jui Hsieh;R. Jia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cho-Jui Hsieh其他文献
Cho-Jui Hsieh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cho-Jui Hsieh', 18)}}的其他基金
Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
- 批准号:
2331966 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Learning to Optimize: Designing and Improving Optimizers by Machine Learning Algorithms
RI:小:学习优化:通过机器学习算法设计和改进优化器
- 批准号:
2008173 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1901527 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1719097 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
- 批准号:
EP/X04162X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
- 批准号:
2325755 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
- 批准号:
DP240103385 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
- 批准号:
DP240101301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335412 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant