REU Site: Applied Mathematics Research Program for Undergraduates
REU 网站:本科生应用数学研究计划
基本信息
- 批准号:2050971
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The AMRPU @ FIU program focuses on introducing undergraduate students to research in applied mathematics and provides opportunities for the students to explore various topics and models outside of the standard curriculum. Students will have instruction and mentoring that will help them pursue collaborative research projects closely aligned with their own interests. With this applied modeling approach, the students can quickly get a deeper understanding of the mathematics than is possible in an ordinary classroom environment. In addition, group research projects will familiarize students with communication skills necessary for effective teamwork and will provide opportunities to write scientific, potentially publishable, papers and practice public presentations of their work. Moreover, the program is designed to facilitate access to research in applied mathematics for a very diverse group of undergraduates, including under-represented minority and female students in mathematics and science, and to increase the number and proficiency of students entering the workforce. Through this multifaceted and inclusive approach, the students will gain valuable experiences that will enhance their success in graduate school and careers.Applied Mathematics provides a rich and challenging field of study with practical applications. A wide variety of subjects across science and technology are advanced through mathematical modeling and analysis. Epidemiology, ecology, biomedicine, fluid dynamics, reaction-diffusion processes, and aerodynamics are just a few of the many examples. Each summer this REU program will have a different set of topics for training and research but will keep the common theme of interconnections among the various disciplines of mathematics as well as modeling and applications. The areas of focus include Differential Equations and Dynamical Systems, Fourier Analysis, Linear Algebra, and Probability and Statistics. Connections among these areas (as well as others) will provide the participants a broad view of the fields of mathematics and their utility in all areas of science and technology, a perspective too often missed in traditional mathematics instruction. Similarly, exposure to the common threads and variety of ideas and approaches from a diverse group of undergraduates, graduate students, and faculty mentors of all backgrounds, ethnicities, ancestry, and gender will help promote the progress of the scientific enterprise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
AMRPU @ FIU计划着重于介绍本科生进行应用数学研究,并为学生提供了探索标准课程以外的各种主题和模型的机会。 学生将获得指导和指导,以帮助他们追求与自己的利益紧密一致的协作研究项目。 通过这种应用的建模方法,学生可以迅速对数学的更深入了解,而不是普通的课堂环境中的可能性。 此外,小组研究项目将使学生熟悉有效的团队合作所必需的沟通技巧,并将提供撰写科学,可能发表的论文和练习其工作的公开演讲的机会。此外,该计划旨在促进一群非常多样化的本科生的应用数学研究,包括代表性不足的少数群体和数学和科学领域的女学生,并提高进入劳动力的学生的数量和水平。通过这种多方面且包容的方法,学生将获得宝贵的经验,从而增强他们在研究生院和职业中的成功。应用数学为实用应用提供了丰富而充满挑战的研究领域。通过数学建模和分析,跨科学和技术的各种各样的科学领域都可以提高。 流行病学,生态学,生物医学,流体动力学,反应扩散过程和空气动力学只是许多例子中的少数。 每年夏天,该REU计划将有不同的培训和研究主题,但将在数学的各个学科以及建模和应用程序中保持互连的共同主题。 重点领域包括微分方程和动力学系统,傅立叶分析,线性代数以及概率和统计。这些领域之间(以及其他领域)之间的联系将为参与者提供数学领域及其在科学技术各个领域的效用的广泛视野,这在传统数学教学中常常错过。同样,从各种各样的本科生,研究生和各种背景,种族,祖先和性别的教师导师中接触常见线索,各种思想和方法,这将有助于促进科学企业的进步。该奖项反映了NSF的法定任务,并通过评估范围来反映出支持者的知识群体的支持和宽广的范围,并具有基础的范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Well-posedness and dynamics of solutions to the generalized KdV with low power nonlinearity
- DOI:10.1088/1361-6544/ac93e1
- 发表时间:2022-02
- 期刊:
- 影响因子:1.7
- 作者:Isaac Friedman;Oscar G. Riaño;S. Roudenko;Diana Son;Kai Yang
- 通讯作者:Isaac Friedman;Oscar G. Riaño;S. Roudenko;Diana Son;Kai Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Roudenko其他文献
Svetlana Roudenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Roudenko', 18)}}的其他基金
Joint Applied Mathematics and Statistics Scholarships
应用数学和统计学联合奖学金
- 批准号:
2221491 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Fifth Workshop on Nonlinear Dispersive Equations
第五届非线性色散方程研讨会
- 批准号:
2231021 - 财政年份:2022
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055130 - 财政年份:2021
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1838371 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1927258 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1815873 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
- 批准号:
1929029 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1904139 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
International Conference on Partial Differential Equations (COPDE-2015)
国际偏微分方程会议(COPDE-2015)
- 批准号:
1535822 - 财政年份:2015
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
- 批准号:
1151618 - 财政年份:2012
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
中国恐龙骨骼化石时空分布综合研究
- 批准号:42372030
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
- 批准号:82371902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
REU Site: Applied Artificial Intelligence for Advanced Applications
REU 网站:高级应用的应用人工智能
- 批准号:
2349370 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
- 批准号:
2348984 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Research in Applied Analysis at West Virginia University
REU 网站:西弗吉尼亚大学应用分析本科生研究
- 批准号:
2349040 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Applied and Computational Mathematics
REU 网站:应用与计算数学本科生的研究经验
- 批准号:
2243772 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant