Fifth Workshop on Nonlinear Dispersive Equations

第五届非线性色散方程研讨会

基本信息

  • 批准号:
    2231021
  • 负责人:
  • 金额:
    $ 2.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This award supports participation of U.S.-based mathematicians, including graduate students, postdoctoral researchers, and junior faculty, in the “Fifth Workshop on Nonlinear Dispersive Equations,” held November 8-11, 2022, at the Federal University of Minas Gerais, Belo Horizonte, Brazil. This is a collaborative meeting in the area of analysis and nonlinear differential equations that is geared towards creating international connections, especially for junior mathematicians, by bringing together North and South American researchers in the field. The workshop will provide collaborative, educational, and networking opportunities for a significant number of researchers working in nonlinear wave equations and offers unique professional opportunities to early-career U.S.-based researchers, including those from historically underrepresented groups in the mathematical sciences. This is the fifth such meeting in its series; previous meetings have been increasingly successful in promoting research that studies nonlinear models, waves, turbulence, and singularities arising in various practical applications, including rogue waves and air turbulence, optics and communication, and mechanics. The field of nonlinear evolution equations has been experiencing dramatic growth over the last thirty years. New ideas and techniques have enabled mathematicians to explore questions that previously seemed intractable, and the work has led to advances in understanding several fundamental nonlinear wave equations such as the nonlinear Schrödinger, Korteweg-de Vries, Benjamin-Ono, and nonlinear Klein-Gordon equations, including their various generalizations and extensions. However, some important questions, such as the description of stable and coherent structures, are yet to be fully explored. The conference will focus on common questions associated with the mathematical description of nonlinear dispersive models and the latest advances in the field. Additional information can be found at the conference website: https://sites.google.com/view/v-wndeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Svetlana Roudenko其他文献

Svetlana Roudenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Svetlana Roudenko', 18)}}的其他基金

Joint Applied Mathematics and Statistics Scholarships
应用数学和统计学联合奖学金
  • 批准号:
    2221491
  • 财政年份:
    2023
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics Research Program for Undergraduates
REU 网站:本科生应用数学研究计划
  • 批准号:
    2050971
  • 财政年份:
    2021
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1838371
  • 财政年份:
    2018
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1927258
  • 财政年份:
    2018
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1815873
  • 财政年份:
    2018
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
  • 批准号:
    1929029
  • 财政年份:
    2018
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1904139
  • 财政年份:
    2018
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
International Conference on Partial Differential Equations (COPDE-2015)
国际偏微分方程会议(COPDE-2015)
  • 批准号:
    1535822
  • 财政年份:
    2015
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
  • 批准号:
    1151618
  • 财政年份:
    2012
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

定制化生产下车间资源的数字孪生管控方法
  • 批准号:
    62303142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时变环境下混合流水车间调度优化理论与方法研究
  • 批准号:
    12371310
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
考虑装车效率的分布式柔性流水车间调度研究
  • 批准号:
    52305550
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
孪生数据驱动的船舶建造车间多工位协同优化与动态决策方法
  • 批准号:
    52371324
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于复杂工艺柔性的车间调度集成优化问题精确建模及其高效求解
  • 批准号:
    52305534
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    $ 2.85万
  • 项目类别:
Real-time mapping and adaptive testing for neural population hypotheses
神经群体假设的实时映射和自适应测试
  • 批准号:
    10838393
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10349759
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10707480
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
  • 批准号:
    2230164
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了