Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
基本信息
- 批准号:1721495
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large amounts of multidimensional data in the form of multilinear arrays, or tensors, arise routinely in modern applications from such diverse fields as chemometrics, genomics, physics, psychology, and signal processing, among many others. At the present time, our ability to generate and acquire such data has far outpaced our ability to effectively extract useful information. There is a clear need to develop novel statistical methods, efficient computational algorithms, and fundamental mathematical theory to analyze and exploit information in these types of data. This research project builds upon prior work in high-dimensional statistics, genomics, quantum physics, fast functional MRI, and closed-loop diabetes control to address the challenges in analysis of large tensorial data sets. It is anticipated that the project will help to advance future research in these and other areas of applications.One of the main challenges in dealing with this type of data is to develop methods of statistical inference to achieve both the statistical and computational efficiencies. More often than not, these two aims are not simultaneously achieved by existing methods: there is a gap between the optimal rate in the minimax sense and the best rate achievable by existing polynomial-time algorithms. The overarching goal of this project is to develop statistical methods, algorithms, and theory to efficiently, both statistically and computationally, analyze large scale data in the form of tensors. In particular, four most common and interrelated problems will be studied systematically: low-rank tensor denoising, low-rank tensor regression, estimation of the moment tensor, and tensor phase retrieval.
大量的多维数据以多线性阵列或张量的形式出现在现代应用中,这些应用来自化学计量学,基因组学,物理学,心理学和信号处理等许多领域。目前,我们生成和获取此类数据的能力远远超过了我们有效提取有用信息的能力。显然需要开发新的统计方法,有效的计算算法和基本的数学理论来分析和利用这些类型的数据中的信息。该研究项目建立在高维统计,基因组学,量子物理,快速功能性MRI和闭环糖尿病控制方面的先前工作的基础上,以解决大型张量数据集分析中的挑战。 预计该项目将有助于推进这些和其他应用领域的未来研究。处理这类数据的主要挑战之一是开发统计推断方法,以实现统计和计算效率。通常情况下,这两个目标是不能同时实现现有的方法:在极大极小意义上的最佳速率和现有的多项式时间算法可实现的最佳速率之间存在差距。该项目的总体目标是开发统计方法,算法和理论,以有效地在统计和计算上分析张量形式的大规模数据。特别是,四个最常见的和相互关联的问题将系统地研究:低秩张量去噪,低秩张量回归,估计的矩张量,和张量相位恢复。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-dimensional simultaneous inference with the bootstrap
- DOI:10.1007/s11749-017-0554-2
- 发表时间:2017-12-01
- 期刊:
- 影响因子:1.3
- 作者:Dezeure, Ruben;Buhlmann, Peter;Zhang, Cun-Hui
- 通讯作者:Zhang, Cun-Hui
Limit distribution theory for block estimators in multiple isotonic regression
多元等渗回归中块估计量的极限分布理论
- DOI:10.1214/19-aos1928
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Han, Qiyang;Zhang, Cun-Hui
- 通讯作者:Zhang, Cun-Hui
Second-order Stein: SURE for SURE and other applications in high-dimensional inference
- DOI:10.1214/20-aos2005
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:P. Bellec;Cun-Hui Zhang
- 通讯作者:P. Bellec;Cun-Hui Zhang
Extreme eigenvalues of nonlinear correlation matrices with applications to additive models
非线性相关矩阵的极值特征值及其在加性模型中的应用
- DOI:10.1016/j.spa.2021.04.006
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Guo, Zijian;Zhang, Cun-Hui
- 通讯作者:Zhang, Cun-Hui
Statistically optimal and computationally efficient low rank tensor completion from noisy entries
从噪声条目中实现统计上最优且计算效率高的低秩张量完成
- DOI:10.1214/20-aos1942
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xia, Dong;Yuan, Ming;Zhang, Cun-Hui
- 通讯作者:Zhang, Cun-Hui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cun-Hui Zhang其他文献
EMPIRICAL BAYES AND COMPOUND ESTIMATION OF NORMAL MEANS
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Risk bounds in isotonic regression
- DOI:
10.1214/aos/1021379864 - 发表时间:
2002-04 - 期刊:
- 影响因子:4.5
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Fourier Methods for Estimating Mixing Densities and Distributions
- DOI:
10.1214/aos/1176347627 - 发表时间:
1990-06 - 期刊:
- 影响因子:4.5
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Some Moment and Exponential Inequalities for V-Statistics with Bounded Kernels
- DOI:
10.1023/a:1011171916115 - 发表时间:
2001-04-01 - 期刊:
- 影响因子:0.600
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION OF NORMAL MIXTURE DENSITIES
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Cun-Hui Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cun-Hui Zhang', 18)}}的其他基金
Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
- 批准号:
2210850 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
- 批准号:
2052949 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
SEMIPARAMETRIC INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的半参数推理
- 批准号:
1513378 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
- 批准号:
1407939 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
BIGDATA: Small: DA: Statistical Machine Learning Methods for Scalable Data Analysis
BIGDATA:小型:DA:用于可扩展数据分析的统计机器学习方法
- 批准号:
1250985 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的统计推断
- 批准号:
1209014 - 财政年份:2012
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Statistical Problems in Closed-Loop Diabetes Control
闭环糖尿病控制中的统计问题
- 批准号:
1106753 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Statistical Methods and Theory in Some High-Dimensional Problems
一些高维问题的统计方法和理论
- 批准号:
0906420 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Multi-Way Semilinear Methods with Applications to Microarray Data
多路半线性方法在微阵列数据中的应用
- 批准号:
0604571 - 财政年份:2006
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond; Rutgers University - New Brunswick, NJ; October 21-22, 2005
复杂数据集和反问题:断层扫描、网络等;
- 批准号:
0534181 - 财政年份:2005
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant