Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond; Rutgers University - New Brunswick, NJ; October 21-22, 2005
复杂数据集和反问题:断层扫描、网络等;
基本信息
- 批准号:0534181
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Prop ID: DMS-0534181 PI: Zhang, Cun-Hui PO: Shulamith T. Gross Institution: Rutgers University New Brunswick Title: Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond The conference ``Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond'' will be held October 21-22, 2005 at Rutgers University. The conference will focus on a number of important and emerging interdisciplinary areas of research, including medical tomography, networks, and biased data. Statistical tomography algorithms have been playing crucial roles in the development of medical imaging systems, from CAT, PET, SPECT to MRI. In fast functional MRI, brain functions are studied from data sets composed of multiple time series of incomplete Fourier transformation of the deoxy spin density of the brain. Networks are abundant around us: social, energy, traffic, communication, and computer are just some of the examples. Enormous amount of networks data have been collected in the information age we live in, but few statistical tools have been developed for analyzing them as they are typically governed by time-varying and mutually dependent communication protocols sitting on complicated graph-structured network topologies. Many prototypical applications in these and other important technologies can be viewed as statistical inverse problems with large, high-dimensional, and probably biased/incomplete data, which serve as the unifying ground for the conference. The conference will advance several important areas in statistics, including models and methodologies for complex datasets, inverse problems, imaging systems, networks, and incomplete and biased data. Cutting-edge developments of statistical models, methods, and algorithms will be discussed. The conference will have direct impact on a broad range of scientific applications outside the immediate realm of statistics. Examples include functional MRI and other medical imaging systems, telecommunication, energy, transportation, and social networks, network security, bioinformatics, epidemiology, and clinical trials. The conference is expected to attract researchers in different areas of applications, in medical imaging, telecommunications, bio-medical engineering, bioinformatics, epidemiology, and more. These will comprise both internationally renowned experts and graduate students or young researchers who wish to embark in these rapidly progressing interdisciplinary areas. Time will be generously allotted for informal discussion and fruitful exchange of ideas. Through these activities, the conference will play an important role in fostering new research partnership between young and senior participants and among researchers in different areas of applications. The conference will promote research activities, education, and participation of new investigators, graduate students, and researchers from under-represented groups. The proceedings of the conference have been arranged to be published as a volume in the Institute of Mathematical Statistics Monograph series. This publication will help disseminate widely the advances covered in the conference, especially among the researchers who are not able to attend the conference.
摘要项目ID:DMS-0534181 PI:Zhang,Cun-Hui PO:Shulamith T.格罗斯机构:罗格斯大学新玩法标题:复杂数据集和逆问题:断层扫描,网络,和超越 会议“复杂数据集和逆问题:层析成像,网络和超越”将于2005年10月21日至22日在罗格斯大学举行。会议将重点关注一些重要和新兴的跨学科研究领域,包括医学断层扫描,网络和有偏见的数据。统计层析成像算法在从CAT、PET、SPECT到MRI的医学成像系统的发展中起着至关重要的作用。在快速功能MRI中,从由大脑脱氧自旋密度的不完全傅立叶变换的多个时间序列组成的数据集研究大脑功能。网络在我们身边无处不在:社会、能源、交通、通信和计算机只是其中的一些例子。在我们所处的信息时代,已经收集了大量的网络数据,但是很少有统计工具被开发用于分析它们,因为它们通常由位于复杂的图结构网络拓扑上的时变和相互依赖的通信协议来管理。这些和其他重要技术中的许多原型应用可以被视为具有大型,高维,可能有偏见/不完整数据的统计逆问题,这是会议的统一基础。会议将推进统计学的几个重要领域,包括复杂数据集的模型和方法,逆问题,成像系统,网络以及不完整和有偏见的数据。将讨论统计模型、方法和算法的前沿发展。这次会议将对直接统计领域以外的广泛科学应用产生直接影响。示例包括功能性MRI和其他医学成像系统、电信、能源、运输和社交网络、网络安全、生物信息学、流行病学和临床试验。会议预计将吸引不同应用领域的研究人员,包括医学成像,电信,生物医学工程,生物信息学,流行病学等。这些将包括国际知名的专家和研究生或年轻的研究人员谁希望在这些迅速发展的跨学科领域开始。将慷慨地拨出时间进行非正式讨论和富有成果的意见交流。通过这些活动,会议将发挥重要作用,促进青年和高级参与者之间以及不同应用领域的研究人员之间建立新的研究伙伴关系。会议将促进研究活动,教育和新的调查人员,研究生和来自代表性不足的群体的研究人员的参与。会议记录已安排出版的一卷研究所的数理统计专着系列。这份出版物将有助于广泛传播会议所涵盖的进展,特别是在无法参加会议的研究人员中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cun-Hui Zhang其他文献
EMPIRICAL BAYES AND COMPOUND ESTIMATION OF NORMAL MEANS
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Risk bounds in isotonic regression
- DOI:
10.1214/aos/1021379864 - 发表时间:
2002-04 - 期刊:
- 影响因子:4.5
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Fourier Methods for Estimating Mixing Densities and Distributions
- DOI:
10.1214/aos/1176347627 - 发表时间:
1990-06 - 期刊:
- 影响因子:4.5
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Some Moment and Exponential Inequalities for V-Statistics with Bounded Kernels
- DOI:
10.1023/a:1011171916115 - 发表时间:
2001-04-01 - 期刊:
- 影响因子:0.600
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION OF NORMAL MIXTURE DENSITIES
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cun-Hui Zhang - 通讯作者:
Cun-Hui Zhang
Cun-Hui Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cun-Hui Zhang', 18)}}的其他基金
Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
- 批准号:
2210850 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
- 批准号:
2052949 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
- 批准号:
1721495 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
SEMIPARAMETRIC INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的半参数推理
- 批准号:
1513378 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
- 批准号:
1407939 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
BIGDATA: Small: DA: Statistical Machine Learning Methods for Scalable Data Analysis
BIGDATA:小型:DA:用于可扩展数据分析的统计机器学习方法
- 批准号:
1250985 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的统计推断
- 批准号:
1209014 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Statistical Problems in Closed-Loop Diabetes Control
闭环糖尿病控制中的统计问题
- 批准号:
1106753 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Statistical Methods and Theory in Some High-Dimensional Problems
一些高维问题的统计方法和理论
- 批准号:
0906420 - 财政年份:2009
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Multi-Way Semilinear Methods with Applications to Microarray Data
多路半线性方法在微阵列数据中的应用
- 批准号:
0604571 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
- 批准号:
2312982 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
- 批准号:
2306453 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Elements: Curating and Disseminating Solid Mechanics Based Benchmark Datasets
要素:整理和传播基于固体力学的基准数据集
- 批准号:
2310771 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
- 批准号:
2316421 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creating harmonised and scalable methods and tools for constructing households in large diverse administrative and health research datasets
创建统一且可扩展的方法和工具,用于在大型多样化的行政和健康研究数据集中构建家庭
- 批准号:
ES/X00046X/1 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
EO4AgroClimate Using Earth Observation data to improve datasets for biosecurity risk mapping of pest and disease and biocontrol suitability
EO4AgroClimate 利用地球观测数据改进病虫害生物安全风险图及生物防治适宜性的数据集
- 批准号:
ST/Y00017X/1 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Establishing foundational tools and datasets for investigation of NSD1 gene function in neural development
建立用于研究神经发育中 NSD1 基因功能的基础工具和数据集
- 批准号:
10711291 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别: