SEMIPARAMETRIC INFERENCE WITH HIGH-DIMENSIONAL DATA

高维数据的半参数推理

基本信息

  • 批准号:
    1513378
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Big Data is an area of intense current interest in statistical research and practice due to the rapid development of information technologies and their applications to modern scientific experiments. High-dimensional statistical methods typically provide crucial elements and ideas in engineering solutions for complex Big Data problems. Important fields with an abundance of such problems include bioinformatics, signal processing, neural imaging, communications and social networks, text mining and more. In many such applications, the nominal complexity of the problem, typically measured by the dimension of the data such as genetic components in bioinformatics, brain regions or voxels in neural imaging, or computers and routers in the Internet, is much greater than number of sample points or the information content of the data. The research project will identify and characterize high-dimensional statistical models and problems in which efficient statistical inference are feasible, and will develop new methodologies and algorithms to carry out such efficient statistical inference with high-dimensional data. The proposed research is motivated by and will be directly applicable to real life problems in the aforementioned areas where modern information technologies prosper. Furthermore, the proposed research will have significant educational impact. A longstanding challenge in high-dimensional data is to identify problems where regular statistical inference is feasible without relying on model selection consistency theory. Consistent model selection allows reduction of the nominal complexity of the problem to a manageable level by identifying all relevant features. However, model selection consistency typically requires uniformly strong signal to separate relevant features from irrelevant ones. Unfortunately, such uniform signal strength assumption is seldom supported by either the data or the underlying science, especially in biological, medical and sociological applications. The PI has proposed a semi-low-dimensional approach of statistical inference and successfully applied it to construct regular p-values and confidence intervals in high-dimensional regression and graphical models. This approach corrects the bias of model selectors just as semiparametric approach corrects the bias of nonparametric estimators. The proposed research will further develop this approach in high-dimensional data analysis and tackle new problems in ways not visible just a few years ago. It will focus on efficient statistical inference with semisupervised data and problems involving many high-dimensional or complex components, including confidence regions and significant tests for composite and multivariate features with high-dimensional data. The project will develop practical methods, efficient algorithms, statistical software, and solid theory directly relevant to common applications involving many high-dimensional or complex components.
由于信息技术的快速发展及其在现代科学实验中的应用,大数据是当前统计研究和实践中的一个热门领域。高维统计方法通常为复杂的大数据问题的工程解决方案提供关键元素和想法。具有大量此类问题的重要领域包括生物信息学、信号处理、神经成像、通信和社交网络、文本挖掘等。在许多这样的应用中,问题的标称复杂性通常由数据的维度(诸如生物信息学中的遗传成分、神经成像中的大脑区域或体素、或互联网中的计算机和路由器)来测量,远大于样本点的数量或数据的信息内容。该研究项目将确定和表征高维统计模型和问题,其中有效的统计推断是可行的,并将开发新的方法和算法来进行这种有效的统计推断与高维数据。拟议的研究的动机,并将直接适用于真实的生活中的问题,在上述领域的现代信息技术的繁荣。此外,拟议的研究将产生重大的教育影响。高维数据中的一个长期挑战是在不依赖模型选择一致性理论的情况下识别常规统计推断可行的问题。一致的模型选择允许通过识别所有相关特征将问题的标称复杂性降低到可管理的水平。然而,模型选择的一致性通常需要一致的强信号来区分相关特征和不相关特征。不幸的是,这种均匀的信号强度假设很少得到数据或基础科学的支持,特别是在生物学,医学和社会学应用中。PI提出了一种统计推断的半低维方法,并成功地将其应用于高维回归和图形模型中的常规p值和置信区间的构建。这种方法纠正了模型选择器的偏差,就像半参数方法纠正非参数估计量的偏差一样。拟议的研究将进一步发展这种方法在高维数据分析和解决新的问题的方式还没有看到几年前。它将专注于半监督数据的有效统计推断和涉及许多高维或复杂组件的问题,包括置信区域和高维数据的复合和多变量特征的显著性检验。该项目将开发实用的方法,高效的算法,统计软件和坚实的理论直接相关的常见应用程序涉及许多高维或复杂的组件。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isotonic regression in multi-dimensional spaces and graphs
多维空间和图形中的等渗回归
  • DOI:
    10.1214/20-aos1947
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deng, Hang;Zhang, Cun-Hui
  • 通讯作者:
    Zhang, Cun-Hui
BEYOND GAUSSIAN APPROXIMATION: BOOTSTRAP FOR MAXIMA OF SUMS OF INDEPENDENT RANDOM VECTORS
  • DOI:
    10.1214/20-aos1946
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Deng, Hang;Zhang, Cun-Hui
  • 通讯作者:
    Zhang, Cun-Hui
Limit distribution theory for block estimators in multiple isotonic regression
多元等渗回归中块估计量的极限分布理论
  • DOI:
    10.1214/19-aos1928
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han, Qiyang;Zhang, Cun-Hui
  • 通讯作者:
    Zhang, Cun-Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cun-Hui Zhang其他文献

EMPIRICAL BAYES AND COMPOUND ESTIMATION OF NORMAL MEANS
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Risk bounds in isotonic regression
  • DOI:
    10.1214/aos/1021379864
  • 发表时间:
    2002-04
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Fourier Methods for Estimating Mixing Densities and Distributions
  • DOI:
    10.1214/aos/1176347627
  • 发表时间:
    1990-06
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Some Moment and Exponential Inequalities for V-Statistics with Bounded Kernels
GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION OF NORMAL MIXTURE DENSITIES
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang

Cun-Hui Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cun-Hui Zhang', 18)}}的其他基金

Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
  • 批准号:
    2210850
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
  • 批准号:
    2052949
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
  • 批准号:
    1721495
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
  • 批准号:
    1407939
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
BIGDATA: Small: DA: Statistical Machine Learning Methods for Scalable Data Analysis
BIGDATA:小型:DA:用于可扩展数据分析的统计机器学习方法
  • 批准号:
    1250985
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的统计推断
  • 批准号:
    1209014
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Problems in Closed-Loop Diabetes Control
闭环糖尿病控制中的统计问题
  • 批准号:
    1106753
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Methods and Theory in Some High-Dimensional Problems
一些高维问题的统计方法和理论
  • 批准号:
    0906420
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-Way Semilinear Methods with Applications to Microarray Data
多路半线性方法在微阵列数据中的应用
  • 批准号:
    0604571
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond; Rutgers University - New Brunswick, NJ; October 21-22, 2005
复杂数据集和反问题:断层扫描、网络等;
  • 批准号:
    0534181
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
  • 批准号:
    2310981
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Safe and Robust Causal Inference for High-Dimensional Complex Data
高维复杂数据的安全稳健的因果推理
  • 批准号:
    2311291
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
  • 批准号:
    2310578
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
  • 批准号:
    2310756
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
High-dimensional inference for models of antimicrobial resistance transmission in open populations.
开放人群中抗菌药物耐药性传播模型的高维推断。
  • 批准号:
    2753494
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了