CDS&E: Point Process Models for Traffic Risk Analysis and Crash Prevention

CDS

基本信息

  • 批准号:
    2053188
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Traffic and crash databases collected by state and federal departments of transportation contain a wealth of information that can be used to increase highway safety. For example, crash databases can be used to identify locations where crashes frequently occur as well as the underlying factors that contributed to those crashes. Such analysis of crash databases can subsequently lead to identifying countermeasures that can be enacted to decrease the frequency of crashes at high-risk locations. While many efforts are ongoing to use the information contained in these databases to increase traffic safety, modern traffic datasets contain more information than can be currently extracted using traditional data analysis techniques. The most glaring shortcoming of common statistical techniques for crash data is that such techniques focus only on small segments of the road (e.g. intersections) rather than analyzing the entire roadway network simultaneously. In this project, the researchers are developing statistical methodology that will analyze an entire roadway network to capture important relationships between roadway features that may lead to an increase in crashes. Ultimately, the goal of this project is to analyze traffic network data so as to identify ways to create a safer roadway network for all travelers. Beyond research activities, mentoring activities associated with this project include student mentoring on advanced topics in data science and traffic safety engineering. Educational activities will include STEM career presentations to high school students as well as the development of a novel interdisciplinary research group.Historically, statistical models for traffic crashes have analyzed aggregated crash counts along with roadway segments, where aggregated data forfeit the use of any within-segment information. Modern crash databases, however, contain data on the exact locations of crashes (referred to as point pattern data) which, if analyzed appropriately, can give richer statistical inferences than aggregated data. This project seeks to fully utilize the information in modern traffic databases by considering the continuous nature of roadway traffic rather than relying on arbitrarily aggregated count data over roadway segments. Specifically, this project will develop easily implementable and computationally feasible approaches to modeling crash point pattern data to determine where crashes are likely to occur (referred to as hot spot identification) as well as how features of the roadway influence the potential for a crash (referred to as risk factor identification). Specifically, this project has the following goals related to statistical and civil engineering science: (1) develop piece-wise linear point process models on roadway networks and (2) develop a hierarchical point process approach to model multiple crash types simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
州和联邦交通部门收集的交通和碰撞数据库包含了大量可用于提高公路安全的信息。 例如,碰撞数据库可用于确定碰撞频繁发生的位置以及导致这些碰撞的潜在因素。 对坠机数据库的这种分析随后可导致确定可采取的对策,以减少高风险地点的坠机频率。虽然许多努力正在进行中,以使用这些数据库中包含的信息,以提高交通安全,现代交通数据集包含更多的信息比目前可以提取使用传统的数据分析技术。 常见的碰撞数据统计技术最明显的缺点是,这种技术只关注道路的一小部分(例如十字路口),而不是同时分析整个道路网络。 在这个项目中,研究人员正在开发统计方法,该方法将分析整个道路网络,以捕捉可能导致事故增加的道路特征之间的重要关系。 最终,该项目的目标是分析交通网络数据,以确定为所有旅行者创建更安全的道路网络的方法。 除了研究活动之外,与该项目相关的辅导活动还包括数据科学和交通安全工程高级主题的学生辅导。 教育活动将包括向高中生进行STEM职业介绍,以及发展一个新的跨学科研究小组。历史上,交通事故的统计模型分析了道路路段的汇总碰撞计数沿着,其中汇总数据丧失了任何路段内信息的使用。 然而,现代的碰撞数据库包含关于碰撞的确切位置的数据(称为点模式数据),如果适当地分析,这些数据可以给出比汇总数据更丰富的统计推断。 该项目旨在充分利用现代交通数据库中的信息,考虑道路交通的连续性,而不是依赖于任意汇总的路段计数数据。 具体而言,该项目将开发易于实施和计算可行的方法来模拟碰撞点模式数据,以确定可能发生碰撞的位置(称为热点识别)以及道路特征如何影响碰撞的可能性(称为风险因素识别)。 具体而言,该项目的目标是:(1)开发道路网络上的分段线性点过程模型;(2)开发同时模拟多种碰撞类型的分层点过程方法。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Heaton其他文献

A systematic review of the impact of post-harvest aquatic food processing technology on gender equality and social justice
对收获后水产食品加工技术对性别平等和社会正义影响的系统综述
  • DOI:
    10.1038/s43016-024-01034-6
  • 发表时间:
    2024-08-27
  • 期刊:
  • 影响因子:
    21.900
  • 作者:
    Nitya Rao;Lee Hooper;Heather Gray;Natasha Grist;Johanna Forster;Julie Bremner;Ghezal Sabir;Matthew Heaton;Nisha Marwaha;Sudarshan Thakur;Abraham Wanyama;Liangzi Zhang
  • 通讯作者:
    Liangzi Zhang

Matthew Heaton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Heaton', 18)}}的其他基金

ENVR 2022 Workshop: Environmental and Ecological Statistical Research and Applications with Societal Impacts
ENVR 2022 研讨会:具有社会影响的环境与生态统计研究与应用
  • 批准号:
    2224121
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Statistical Validation and Uncertainty Quantification for Large Spatio-Temporal Datasets
合作研究:大型时空数据集的可扩展统计验证和不确定性量化
  • 批准号:
    1417856
  • 财政年份:
    2014
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Heat Transfer Modeling and Verification of Wetting Initiation Point during Unsteady Cooling Process of High Temperature Surface by Boiling
高温表面沸腾非稳态冷却过程中润湿起始点的传热建模与验证
  • 批准号:
    22K03942
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon process enhancement to enable 3D chest-imaging at the Point-of-Care
硅工艺增强,可在护理点实现 3D 胸部成像
  • 批准号:
    10000864
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Collaborative R&D
High-Dimensional Point Process Modeling with Applications to Large-scale Neuronal Activity Analysis
高维点过程建模及其在大规模神经元活动分析中的应用
  • 批准号:
    2113467
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
The Application of Self-Exciting Point Process in Credit Rating
自激点过程在信用评级中的应用
  • 批准号:
    563455-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    University Undergraduate Student Research Awards
ATD: Relational Point Process Models: Theory, Methods, and Applications
ATD:关系点过程模型:理论、方法和应用
  • 批准号:
    2114727
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015386
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015382
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
ATD: Relational Point Process Models: Theory, Methods, and Applications
ATD:关系点过程模型:理论、方法和应用
  • 批准号:
    2027846
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Detailed diagnostic analysis and probability prediction of seismic activity by non-stationary non-uniform spatiotemporal point process model
非平稳非均匀时空点过程模型地震活动详细诊断分析与概率预测
  • 批准号:
    20K11704
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了