Collaborative Research: Exploring System-Wide Events on Complex Fault Networks using Fully-Dynamic 3D Earthquake Cycle Simulations

协作研究:使用全动态 3D 地震周期模拟探索复杂故障网络上的系统范围事件

基本信息

  • 批准号:
    2053372
  • 负责人:
  • 金额:
    $ 34.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The world’s largest earthquakes occur on interconnected fault networks embedded in the Earth’s crust. The conditions under which large earthquakes occur is believed to be dependent on a millennia-long history of tectonic motion in the region, as well as other physical conditions such as frictional forces acting on the fault itself. The goal of this work is to use mathematical modeling to expand our understanding of the physics that dictate where and when an earthquake will occur. The high computational cost associated with simulating long periods of earthquake activity has limited previous modeling attempts to simple scenarios (for example, considering only a single fault, with no generation of damaging seismic waves). The PIs will overcome these limitations by using a high-performance implementation of their recently developed advanced numerical scheme for earthquake cycles. Key questions the researchers will explore include: why do some large earthquakes occur on faults that seem stable when subjected to tectonic loading? Results from these studies will improve seismic hazard estimates by shedding light on if and how such large earthquakes can occur on a given fault network. The codes will be made publicly available under a permissive open source license for use by others. In addition to supporting one junior faculty member (under-represented in her field) and one mid-career faculty member, the proposal supports the mentoring of two graduate students in interdisciplinary research.The goal of this work is to expand understanding of the physical settings in which system-wide earthquakes can occur through the use of large-scale, physically-robust earthquake cycle models. This work will develop a large-scale, high-performance framework that accounts for complex fault geometries, off-fault material properties, and full dynamics in 3D volumes. The method will couple interseismic loading with coseismic rupture and wave propagation in a self-consistent manner. The coupled approach will be used to explore the role that tectonic loading, rupture history, fault geometry and other physical features play in system-wide failure of fault networks. This will include such studies as the keystone fault hypothesis, namely, that faults in a system that are optimally oriented with respect to the regional stress field are stabilized by misoriented keystone faults until the entire network is primed to fail. The high computational cost associated with simulating the interseismic period has limited previous cycle models to simple fault geometries, suppressed dynamic effects, and/or use small simulation volumes. The project will use recently developed hybridized scheme for the interseismic period, which is well suited for problems that in the past have been too computationally expensive. The hybrid method will be coupled with a newly developed technique for dynamic rupture simulation to study sequences of multiple earthquakes on complex fault networks. By leveraging state-of-the-art algorithms and high-performance computing, this work will lead to the development of a large-scale, physically robust, predictive modeling framework of earthquake source processes on complex fault networks. This new framework will allow the exploration of fundamental questions in earthquake science, focusing on how earthquakes can nucleate on misoriented faults, often giving rise to huge, network-wide events. The 2010 Mw 7.2 El Mayor-Cucapah and the 2016 Mw 7.8 Kaikoura are two well-known examples of earthquakes whose magnitudes exceeded expectations by cascading through multiple segments of a fault network. This work will contribute to seismic hazard estimates by calculating event probabilities associated with complex fault networks in a physically robust modeling environment, complementing and improving the greater efforts of the earthquake simulators currently used to inform earthquake forecasting. In order to benefit the larger earthquake science community the PIs will make the developed codes publicly available under the MIT license, and will use an open development strategy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世界上最大的地震发生在嵌入地壳的相互连接的断层网络上。据信,大地震发生的条件取决于该地区数千年的构造运动历史,以及其他物理条件,如作用于断层本身的摩擦力。这项工作的目标是使用数学建模来扩展我们对决定地震何时何地发生的物理学的理解。与模拟长时间地震活动相关的高计算成本限制了以前对简单场景的建模尝试(例如,仅考虑单个断层,不产生破坏性地震波)。 PI将通过使用其最近开发的地震周期高级数值方案的高性能实现来克服这些限制。研究人员将探索的关键问题包括:为什么一些大地震发生在受到构造载荷时似乎稳定的断层上? 这些研究的结果将通过阐明这种大地震是否以及如何在给定的断层网络上发生来改善地震危险性估计。这些代码将在许可的开源许可下公开提供,供其他人使用。除了支持一名初级教师(在她的领域代表性不足)和一名职业中期教师,该提案还支持指导两名研究生进行跨学科研究。这项工作的目标是通过使用大规模,物理稳健的地震周期模型,扩大对系统范围地震可能发生的物理环境的理解。这项工作将开发一个大规模的,高性能的框架,占复杂的故障几何形状,离故障的材料属性,并在三维体积的完整动态。该方法将以自洽的方式将震间载荷与同震破裂和波传播耦合起来。耦合方法将用于探索构造载荷、破裂历史、断层几何形状和其他物理特征在系统范围内所起的作用。 网络故障。这将包括这样的研究作为基石故障假说,即在一个系统中的故障是最佳的方向相对于区域应力场是稳定的错误定向基石故障,直到整个网络是准备失败。与模拟震间周期相关的高计算成本限制了以前的周期模型简单的断层几何形状,抑制动态效应,和/或使用小的模拟量。该项目将使用最近开发的混合方案的地震间隔期,这是非常适合的问题,在过去一直是太昂贵的计算。该混合方法将与新开发的动态破裂模拟技术相结合,以研究复杂断层网络上的多地震序列。通过利用最先进的算法和高性能计算,这项工作将导致复杂断层网络上的地震震源过程的大规模,物理上强大的预测建模框架的发展。这个新框架将允许探索地震科学中的基本问题,重点关注地震如何在方向错误的断层上成核,通常会引发巨大的网络范围内的事件。2010年Mw7.2 El Mayor-Cucapah和2016年Mw7.8 Kaikoura是两个着名的地震例子,其震级超过了断层网络多个部分的预期。这项工作将有助于地震危险性估计,通过计算与复杂断层网络相关的事件概率,在物理上强大的建模环境中,补充和改进目前用于通知地震预报的地震模拟器的更大努力。为了使更大的地震科学界受益,PI将在MIT许可下公开开发的代码,并将使用开放的开发策略。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Non-Stiff Summation-By-Parts Finite Difference Method for the Scalar Wave Equation in Second Order Form: Characteristic Boundary Conditions and Nonlinear Interfaces
  • DOI:
    10.1007/s10915-022-01961-1
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    B. Erickson;J. Kozdon;Tobias W. Harvey
  • 通讯作者:
    B. Erickson;J. Kozdon;Tobias W. Harvey
A High‐Order Accurate Summation‐By‐Parts Finite Difference Method for Fully‐Dynamic Earthquake Sequence Simulations Within Sedimentary Basins
沉积盆地全动态地震序列模拟的高阶精确求和分部有限差分法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brittany Erickson其他文献

Characterization of hydrodynamic properties from free vibration tests of a large-scale bridge model
  • DOI:
    10.1016/j.jfluidstructs.2021.103368
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Schumacher;Alaa W. Hameed;Christopher Higgins;Brittany Erickson
  • 通讯作者:
    Brittany Erickson

Brittany Erickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brittany Erickson', 18)}}的其他基金

CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
  • 批准号:
    2339996
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
  • 批准号:
    1916992
  • 财政年份:
    2019
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
  • 批准号:
    1547603
  • 财政年份:
    2016
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Single-Event and Long-Term Dynamics of Nonplanar Fault Systems
非平面故障系统的单事件和长期动力学
  • 批准号:
    0948304
  • 财政年份:
    2010
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
  • 批准号:
    2307613
  • 财政年份:
    2023
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
  • 批准号:
    2307612
  • 财政年份:
    2023
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327971
  • 财政年份:
    2023
  • 资助金额:
    $ 34.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了