Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
基本信息
- 批准号:1547603
- 负责人:
- 金额:$ 24.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analyzing the hazards that accompany large earthquakes requires an understanding of the interplay between the long term motion of tectonic plates and the structural features near active faults. As tectonic plates move and deform, faults (or cracks) between and embedded in the plates do not slide but are locked due to frictional resistance. As time passes (tens to hundreds of years for large earthquakes) the stress on these faults increases. An earthquake rupture occurs when the level of stress resolved on the fault exceeds the frictional resistance (at least in some local region of the fault). Thus modeling the full earthquake cycle (tectonic loading, nucleation, and full evolution of rupture) is challenging because it requires the resolution of many vastly different timescales. Additional challenges arise from the fact that faults are geometrically complex -- with large-scale bends and branches as well as small-scale non-planar features -- and are surrounded by heterogeneous materials including sediments and clays, as well as much stiffer materials such as granite. Furthermore, field observations of faults reveal an abundance of cracks and micro-fractures -- often referred to as a damage zone -- which must often be included in models to produce realistic results. In this project we will develop, validate, and utilize an earthquake cycle model that can rigorously and self-consistently handle complex fault geometries, damage zones, and heterogeneous materials. We will also explore how geometry and heterogeneity affect the earthquake locations, magnitudes, and recurrence intervals. This proposed work benefits the society at large as understanding the impact of complexity on the earthquake cycle directly informs our understanding of seismic hazard.Seismic hazard analysis requires an understanding of the earthquake cycle including the interaction of remote loading and near-fault structure. Currently, no existing models can account for both the interseismic and coseismic periods with complex fault geometries, heterogeneous materials, and plastic deformation. This funding supports the development and application of a numerical model that rigorously accounts for interseismic loading as well as rupture dynamics in both two- and three-dimensions. To capture the effect of slow tectonic loading on the evolution of the stress field, a computationally efficient quasi-static model will be used. As inertial effects become important, the model will transition to a fully dynamic description where the wavefield is modeled along with its interaction with fault interfaces. All stages of the earthquake cycle will be modeled in a single, self-consistent computational and mathematical framework capable of capturing both complex geometries and material descriptions. The group will develop a parallel quasi-static and dynamic rupture modeling environment that handles complex geometries (e.g., branches, bends, and step-overs), general boundary conditions, plastic deformation, and variable material and frictional properties. The investigators will use the developed model to consider how geometry affects nucleation location, recurrence interval, magnitude, and evolution of the near-fault stress field will be studied as well as the role that plasticity and bi-material properties play when all stages of the earthquake cycle are rigorously considered.
分析伴随大地震的危害需要了解构造板的长期运动与活动断层附近的结构特征之间的相互作用。当构造板移动和变形时,板中和嵌入板之间的断层(或裂纹)不会滑动,而是由于摩擦电阻而被锁定。随着时间的流逝(大地震发生数十年至数十年),这些断层的压力增加。当断层上的应力水平超过摩擦电阻时(至少在断层的某些局部区域)时,地震破裂就会发生。因此,建模全地震循环(构造负载,成核和破裂的全部演变)是具有挑战性的,因为它需要分辨出许多截然不同的时间尺度。其他挑战是由于断层在几何上复杂的事实 - 大规模的弯曲和分支以及小规模的非平面特征 - 并被包括沉积物和粘土在内的异质材料以及花岗岩等较硬的材料所包围。此外,故障的现场观察表明,大量的裂纹和微裂缝(通常称为损伤区)通常必须包含在模型中才能产生逼真的结果。在这个项目中,我们将开发,验证和使用地震循环模型,该模型可以严格和自愿处理复杂的断层几何,损坏区域和异质材料。我们还将探讨几何和异质性如何影响地震位置,大小和复发间隔。这项拟议的工作使社会对社会有所帮助,因为了解复杂性对地震周期的影响直接介绍了我们对地震危害的理解。地震危害分析需要了解地震周期,包括远程载荷和近场结构的相互作用。当前,没有现有模型可以用复杂的断层几何形状,异质材料和塑性变形来解释跨界和coseis震动时期。这项资金支持了一个数值模型的开发和应用,该模型严格地说明了两次和三维和三维的破裂动态。为了捕获缓慢的构造负荷对应力场演变的影响,将使用计算有效的准静态模型。随着惯性效应变得重要,该模型将过渡到完全动态的描述,在该描述中,在波场与故障接口的相互作用一起建模。地震循环的所有阶段将以一个自吻的计算和数学框架进行建模,能够捕获复杂的几何形状和材料描述。该组将开发平行的准静态和动态破裂建模环境,该环境处理复杂的几何形状(例如,分支,弯曲和渐进式),一般边界条件,塑性变形以及可变材料和摩擦特性。研究人员将使用开发的模型来考虑几何形状如何影响成核位置,复发间隔,大小和近磨损应力场的演变以及当严格考虑地震循环的所有阶段时,可塑性和双重特性的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Erickson其他文献
Characterization of hydrodynamic properties from free vibration tests of a large-scale bridge model
- DOI:
10.1016/j.jfluidstructs.2021.103368 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Thomas Schumacher;Alaa W. Hameed;Christopher Higgins;Brittany Erickson - 通讯作者:
Brittany Erickson
Brittany Erickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Erickson', 18)}}的其他基金
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: Exploring System-Wide Events on Complex Fault Networks using Fully-Dynamic 3D Earthquake Cycle Simulations
协作研究:使用全动态 3D 地震周期模拟探索复杂故障网络上的系统范围事件
- 批准号:
2053372 - 财政年份:2021
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
- 批准号:
1916992 - 财政年份:2019
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Single-Event and Long-Term Dynamics of Nonplanar Fault Systems
非平面故障系统的单事件和长期动力学
- 批准号:
0948304 - 财政年份:2010
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
相似国自然基金
基于GOx/纳米酶加载的智能级联响应多功能水凝胶在糖尿病骨缺损修复中的研究
- 批准号:82302688
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离子体活化水凝胶中活性粒子的加载机理与调控方法研究
- 批准号:52207256
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
等离子体活化水凝胶中活性粒子的加载机理与调控方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基质中单细胞定量力学加载技术与细胞力学信息的原位探测研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
循环加载下微纳晶须中界面演化的准原位原子尺度研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: The interplay of nitrogen loading and ecosystem sustainability in threatened wetlands: an extension of the WETFEET project
合作研究:受威胁湿地氮负荷与生态系统可持续性的相互作用:WEFTEET 项目的延伸
- 批准号:
2225001 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
- 批准号:
2311698 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of nitrogen loading and ecosystem sustainability in threatened wetlands: an extension of the WETFEET project
合作研究:受威胁湿地氮负荷与生态系统可持续性的相互作用:WEFTEET 项目的延伸
- 批准号:
2224999 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
- 批准号:
2311697 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: RAPID: Identifying the biogeochemical causes of sudden widespread metal loading in streams of the western Brooks Range, Alaska
合作研究:RAPID:确定阿拉斯加布鲁克斯山脉西部溪流中突然大范围金属负载的生物地球化学原因
- 批准号:
2325290 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant