Tensor and Subspace Learning Methods with Applications to Medical Imaging

张量和子空间学习方法及其在医学成像中的应用

基本信息

  • 批准号:
    2053697
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Medical imaging techniques have become increasingly important for both clinical and research studies. For example, cone beam computed tomography has a major role in diagnosis and treatment planning in dentistry, and functional magnetic resonance imaging is routinely used to help researchers characterize brain activity. More efficient and powerful statistical techniques are needed to analyze medical imaging for diagnosis and prediction of diseases and other disorders. Through this project, new statistical theory, methods, and algorithms will be developed for the analysis of large complex data such as medical imaging data sets. The research is expected to provide new theoretical insights and practical methodologies that advance multivariate statistics while simultaneously responding to the growing needs and challenges of medical imaging data analysis. Results of the research in this project will be disseminated through collaborations with neuroscientists and biomedical engineers, as well as substantial graduate student training and outreach activities. Open source and user-friendly software will also be produced.Ultra-high dimensionality, tensor structure, and high correlations are embedded in modern scientific and engineering data. Estimation and inferential techniques become inefficient or even inconsistent if they ignore high correlations among variables, heterogeneity caused by additional covariates, or intrinsic structural information. To address these challenges, statistically rigorous and computationally efficient learning methods will be developed. A key idea is to construct and estimate targeted subspaces that exclude the noise and irrelevant information in the data set. The research project is expected to make significant contributions on two fronts: computational and theoretical foundations for envelope subspace estimation in high dimensions, and efficient tensorial parameter estimation in regression and classification models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医学成像技术对于临床和研究都变得越来越重要。例如,锥形束计算机断层扫描在牙科的诊断和治疗计划中发挥着重要作用,功能性磁共振成像通常用于帮助研究人员表征大脑活动。需要更有效和强大的统计技术来分析医学成像,以诊断和预测疾病和其他疾病。通过该项目,将开发新的统计理论,方法和算法,用于分析大型复杂数据,如医学成像数据集。该研究有望提供新的理论见解和实用方法,推动多元统计,同时应对医学成像数据分析日益增长的需求和挑战。该项目的研究结果将通过与神经科学家和生物医学工程师的合作以及大量的研究生培训和推广活动进行传播。超高维度、张量结构和高度相关性嵌入现代科学和工程数据。如果忽略变量之间的高度相关性、由额外协变量引起的异质性或内在结构信息,估计和推理技术将变得低效甚至不一致。为了应对这些挑战,将开发统计上严格和计算效率高的学习方法。一个关键的思想是构造和估计目标子空间,排除数据集中的噪声和不相关的信息。该研究项目预计将在两个方面做出重大贡献:高维度包络子空间估计的计算和理论基础,以及回归和分类模型中的有效张量参数估计。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Efficient Convex Formulation for Reduced-Rank Linear Discriminant Analysis in High Dimensions
高维降阶线性判别分析的高效凸公式
  • DOI:
    10.5705/ss.202021.0047
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Zeng, Jing;Zhang, Xin;Mai, Qing
  • 通讯作者:
    Mai, Qing
Envelopes and principal component regression
  • DOI:
    10.1214/23-ejs2154
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Xin Zhang;Kai Deng;Qing Mai
  • 通讯作者:
    Xin Zhang;Kai Deng;Qing Mai
Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction
  • DOI:
    10.1111/biom.13486
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kai Deng;Xin Zhang
  • 通讯作者:
    Kai Deng;Xin Zhang
Likelihood-Based Dimension Folding on Tensor Data
张量数据上基于似然的维度折叠
  • DOI:
    10.5705/ss.202020.0040
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Wang, Ning;Zhang, Xin;Li, Bing
  • 通讯作者:
    Li, Bing
Generalized Liquid Association Analysis for Multimodal Data Integration
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Zhang其他文献

span style=font-family:#39;Times New Roman#39;;font-size:12pt;Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy/span
双敏感和时间控制的喜树碱前药脂质体共递送 siRNA 用于高效肿瘤治疗
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Yan Li;Rui-Yuan Liu;Jun Yang;Guang-Hui Ma;Zhen-Zhong Zhang;Xin Zhang
  • 通讯作者:
    Xin Zhang
Graphene Terahertz Amplitude Modulation Enhanced by Square Ring Resonant Structure
方环谐振结构增强石墨烯太赫兹幅度调制
  • DOI:
    10.1109/jphot.2017.2779870
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Liangping Xia;Xin Zhang;Dongshan Wei;Hong-Liang Cui;Chunlei Du
  • 通讯作者:
    Chunlei Du
The sp2-sp3 transition and shear slipping dominating the compressive deformation of diamond-like carbon
sp2-sp3转变和剪切滑移主导类金刚石碳的压缩变形
  • DOI:
    10.1016/j.jnoncrysol.2021.121318
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yifeng Yu;Xin Zhang;Shengwen Yin;Lichun Bai;Zishun Liu
  • 通讯作者:
    Zishun Liu
Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6-2.6 GPa and 860-970 degrees C
在 0.6-2.6 GPa 和 860-970 摄氏度下由含水玄武岩熔体生长的角闪石的晶体尺寸分布
  • DOI:
    10.2138/am-2019-6759
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Bo Zhang;Xianxu Hu;Paul D. Asimow;Xin Zhang;Jingui Xu;Dawei Fan;Wenge Zhou
  • 通讯作者:
    Wenge Zhou
How Online Descriptions of Used Goods Affect Quality Assessment and Product Preferences: A Conjoint Study
二手商品的在线描述如何影响质量评估和产品偏好:联合研究

Xin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Zhang', 18)}}的其他基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Global Centers Track 1: Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
全球中心轨道 1:全球清洁能源与环境氮创新中心 (NICCEE)
  • 批准号:
    2330502
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Aviation-to-Grid: Grid flexibility through multiscale modelling and integration of power systems with electrified air transport
航空到电网:通过多尺度建模以及电力系统与电气化航空运输的集成实现电网灵活性
  • 批准号:
    EP/W028905/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Digitalisation of Electrical Power and Energy Systems Operation (DEEPS)
电力和能源系统运行数字化 (DEEPS)
  • 批准号:
    MR/W011360/2
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
Digitalisation of Electrical Power and Energy Systems Operation (DEEPS)
电力和能源系统运行数字化 (DEEPS)
  • 批准号:
    MR/W011360/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
Belmont Forum Collaborative Research: Guiding the pursuit for sustainability by co-developing a Sustainable Agriculture Matrix (SAM)
贝尔蒙特论坛合作研究:通过共同开发可持续农业矩阵(SAM)来指导对可持续发展的追求
  • 批准号:
    2137033
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Sustainable Nitrogen Management across Spatial and System Scales
职业:跨空间和系统尺度的可持续氮管理
  • 批准号:
    2047165
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
INFEWS: U.S.-China: Managing agricultural nitrogen to achieve sustainable Food-Energy-Water Nexus in China and the U.S.
INFEWS:中美:管理农业氮以实现中国和美国可持续的食品-能源-水关系
  • 批准号:
    2025826
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2113590
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Quantification of Cellular Proteome Stress and Recovery Using Chemical Methods
职业:使用化学方法量化细胞蛋白质组压力和恢复
  • 批准号:
    1944973
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Developing subspace methods for constrained optimization problems and their application to machine learning
开发约束优化问题的子空间方法及其在机器学习中的应用
  • 批准号:
    23H03351
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of learning subspace-based methods for pattern recognition
基于学习子空间的模式识别方法的开发
  • 批准号:
    22K17960
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    2203741
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    1944904
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Multilinear Subspace Techniques for Learning and Recovery through Tensor-Tensor Decompositions
通过张量-张量分解进行学习和恢复的多线性子空间技术
  • 批准号:
    2007367
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Representation and Subspace Learning for Decentralized and Dependent Data
分散和相关数据的表示和子空间学习
  • 批准号:
    2015366
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1840866
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1462191
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了