Research in Extremal Combinatorics
极值组合学研究
基本信息
- 批准号:2054452
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extremal combinatorics has grown significantly in both depth and breadth in the 21st century, resulting in methods that apply well beyond their original settings. These include applications, and often significant breakthroughs, in number theory, design theory, probability, group theory, and theoretical computer science. The questions that are studied here represent obstacles to our understanding, and it is likely that progress on these challenges and the methods developed in solving them can later be exported to other areas. As such, a major goal of this project is to develop new tools and techniques and to expand on existing methods so that they apply in more general settings. This work will involve training undergraduate and graduate students.The PI will study a variety of fundamental questions in extremal combinatorics, spanning three main areas: extremal graph theory, Ramsey theory, and the study of pseudorandomness. In the first area, the PI intends to study several classical questions on extremal numbers, including the rational exponents conjecture and the compactness conjecture, as well as problems regarding the relationships between the homomorphism densities of different graphs. In the second area, the PI will tackle some of the classical problems on graph Ramsey theory, such as that of determining diagonal Ramsey numbers, as well as questions from arithmetic and geometric Ramsey theory. Finally, the PI intends to make further progress on developing the sparse regularity method and on finding and applying high-dimensional expanders. Common themes run through these areas, and the methods developed in one area are likely to have implications for the others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极值组合学在世纪在深度和广度上都有了显著的发展,产生了远远超出其原始设置的方法。这些包括应用,往往是重大突破,在数论,设计理论,概率论,群论和理论计算机科学。这里研究的问题是我们理解的障碍,在这些挑战方面取得的进展和为解决这些挑战而开发的方法以后可能会被推广到其他领域。因此,该项目的一个主要目标是开发新的工具和技术,并扩大现有的方法,使其适用于更一般的环境。这项工作将涉及培训本科生和研究生。PI将研究极值组合学中的各种基本问题,涵盖三个主要领域:极值图论、拉姆齐理论和伪随机性研究。在第一个领域,PI打算研究极值数的几个经典问题,包括有理指数猜想和紧性猜想,以及关于不同图的同态密度之间的关系的问题。在第二个领域,PI将解决一些关于图拉姆齐理论的经典问题,例如确定对角拉姆齐数,以及算术和几何拉姆齐理论的问题。最后,PI打算在发展稀疏正则性方法以及寻找和应用高维扩展器方面取得进一步的进展。共同的主题贯穿于这些领域,在一个领域开发的方法可能会对其他领域产生影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The upper logarithmic density of monochromatic subset sums
- DOI:10.1112/mtk.12167
- 发表时间:2021-05
- 期刊:
- 影响因子:0.8
- 作者:D. Conlon;J. Fox;H. Pham
- 通讯作者:D. Conlon;J. Fox;H. Pham
Repeated Patterns in Proper Colorings
- DOI:10.1137/21m1414103
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:D. Conlon;Mykhaylo Tyomkyn
- 通讯作者:D. Conlon;Mykhaylo Tyomkyn
Ramsey Numbers of Books and Quasirandomness
- DOI:10.1007/s00493-021-4409-9
- 发表时间:2020-01
- 期刊:
- 影响因子:1.1
- 作者:D. Conlon;J. Fox;Yuval Wigderson
- 通讯作者:D. Conlon;J. Fox;Yuval Wigderson
Monochromatic combinatorial lines of length three
长度为三的单色组合线
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Conlon, David
- 通讯作者:Conlon, David
A new bound for the Brown–Erdős–Sós problem
Brown–ErdÅs–S 问题的新界限
- DOI:10.1016/j.jctb.2022.08.005
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Conlon, David;Gishboliner, Lior;Levanzov, Yevgeny;Shapira, Asaf
- 通讯作者:Shapira, Asaf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Conlon其他文献
Difference sets in ℝd
- DOI:
10.1007/s11856-025-2717-2 - 发表时间:
2025-01-20 - 期刊:
- 影响因子:0.800
- 作者:
David Conlon;Jeck Lim - 通讯作者:
Jeck Lim
More on lines in Euclidean Ramsey theory
更多关于欧几里得拉姆齐理论中的线条
- DOI:
10.5802/crmath.452 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
David Conlon;Yu - 通讯作者:
Yu
Ramsey numbers of cubes versus cliques
- DOI:
10.1007/s00493-014-3010-x - 发表时间:
2014-11-05 - 期刊:
- 影响因子:1.000
- 作者:
David Conlon;Jacob Fox;Choongbum Lee;Benny Sudakov - 通讯作者:
Benny Sudakov
“The Mystery Unsolved, Without Any Attempt to Solve It”: Detective Fiction and Waywardness in Norah Lange’s People in the Room
“谜团尚未解开,却没有任何尝试去解开它”:诺拉·兰格《房间里的人》中的侦探小说与任性
- DOI:
10.1080/08831157.2023.2252815 - 发表时间:
2023 - 期刊:
- 影响因子:0.2
- 作者:
David Conlon - 通讯作者:
David Conlon
Hypergraph cuts above the average
- DOI:
10.1007/s11856-019-1897-z - 发表时间:
2019-07-09 - 期刊:
- 影响因子:0.800
- 作者:
David Conlon;Jacob Fox;Matthew Kwan;Benny Sudakov - 通讯作者:
Benny Sudakov
David Conlon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
带奇点的extremal度量和toric流形上的extremal度量
- 批准号:10901160
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
- 批准号:
2246659 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152488 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Extremal Combinatorics Asymptotics
极值组合渐近学
- 批准号:
574167-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Extremal Combinatorics: Problems and Algorithmic Aspects
极值组合学:问题和算法方面
- 批准号:
2154082 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Graph Theory and Extremal Combinatorics
图论和极值组合学
- 批准号:
576024-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152490 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant