CPS: Small: Mitigating Uncertainties in Computer Numerical Control (CNC) as a Cloud Service using Data-Driven Transfer Learning
CPS:小型:使用数据驱动的迁移学习减轻计算机数控 (CNC) 作为云服务的不确定性
基本信息
- 批准号:1931950
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer numerical control (CNC) is a critical feature of modern manufacturing machines. It provides automated control based on a set of programmed instructions, which traditionally run on a local computer that is physically tethered to the machine. This work envisions a future where manufacturing machines are controlled remotely over the Internet using CNC installed on cloud computers. Among several benefits over traditional CNC, cloud-based CNC holds promise to significantly improve the speed and accuracy of manufacturing machines at low cost. However, a major challenge with cloud-based CNC is that, somewhat like video streaming, it controls manufacturing machines primarily using pre-calculated commands that must be buffered to mitigate Internet transmission delays. For this reason, cloud-based CNC is susceptible to anomalies that result from delayed transmission of information on how the controlled machine is actually behaving. The award supports a scientific investigation into approaches for predicting impending anomalies from data gathered from past experience, and using the predictions to avoid incorrect control actions resulting from inadequate feedback. The U.S. stands to benefit economically from a transition from traditional to cloud-based CNC, since the U.S. is by far the market leader in cloud-based services. The project also will include outreach to U.S. companies, educational curriculum development to increase the U.S. talent pool in manufacturing and data analytics, and activities for middle schoolers in the Detroit area to inspire them to pursue careers in engineering.The objective of the project is to mitigate uncertainties associated with real-time control of manufacturing machines from the cloud using data-driven transfer learning. The knowledge gained will boost the performance of manufacturing machines at low cost by providing the machines with reliable cloud-based CNC. In cloud-based CNC, advanced feedforward control functionalities are transitioned to the cloud while fast feedback loops are retained locally. However, with emphasis on feedforward control, uncertainties in modeling the dynamic behavior of machines could degrade the reliability and performance of cloud-based CNC by causing failures, due to inaccurate control actions. The system will predict failures using measured signals and mitigate them in a redundant, cloud-based CNC architecture by switching control authority from a cloud controller to a back-up local controller in the event of an impending failure. To this end, a data-driven transfer learning framework will predict and minimize uncertainties using data obtained from other machines connected to cloud-based CNC. Such transfer learning leverages data from one source to learn a different, but related, target source. The framework will allow cloud-based CNC to: (i) learn from a combination of condition monitoring signals and past failure data to predict impending failures, (ii) reduce uncertainties by leveraging condition monitoring data to calibrate physical models whose parameters are functions of their inputs, and (iii) plan feasible trajectories for switching from a cloud to a local controller when an impending failure is detected. The project will address the shortcomings of existing transfer learning methods by: (i) predicting failure events from a combination of condition monitoring and past failure data, and (ii) calibration of physics-based models with functional parameters from condition monitoring data. The methods will be evaluated experimentally on a CPS test bed consisting of a 3D printer controlled from the cloud using a cloud-based CNC prototype.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机数控(CNC)是现代制造机械的一个重要特征。它提供基于一组编程指令的自动控制,这些指令通常在物理上与机器相连的本地计算机上运行。这项工作设想了一个未来,制造机器通过安装在云计算机上的CNC通过互联网远程控制。与传统CNC相比,基于云的CNC有几个优点,其中之一是有望以低成本显著提高制造机器的速度和精度。然而,基于云的CNC的一个主要挑战是,有点像视频流,它主要使用预先计算的命令来控制制造机器,这些命令必须进行缓冲,以减少互联网传输延迟。由于这个原因,基于云的CNC容易受到异常的影响,这些异常是由于被控制机器实际行为的信息传输延迟造成的。该奖项支持对从过去经验中收集的数据预测即将发生的异常的方法进行科学研究,并使用预测来避免由于反馈不足而导致的错误控制行动。美国将从传统CNC向基于云的CNC过渡中获得经济利益,因为美国目前是基于云的服务的市场领导者。该项目还将包括与美国公司的接触,开发教育课程,以增加美国制造业和数据分析方面的人才库,以及为底特律地区的中学生举办活动,鼓励他们从事工程方面的职业。该项目的目标是利用数据驱动的迁移学习,减轻与从云端实时控制制造机器相关的不确定性。所获得的知识将通过为机器提供可靠的基于云的CNC来提高低成本制造机器的性能。在基于云的CNC中,先进的前馈控制功能被转移到云端,而快速反馈回路在本地保留。然而,由于强调前馈控制,机器动态行为建模中的不确定性可能会由于不准确的控制动作而导致故障,从而降低基于云的CNC的可靠性和性能。该系统将使用测量信号预测故障,并在一个冗余的、基于云的CNC架构中减轻故障,在即将发生故障的情况下,通过将控制权限从云控制器切换到备用本地控制器。为此,数据驱动的迁移学习框架将使用从连接到基于云的CNC的其他机器获得的数据来预测和最小化不确定性。这种迁移学习利用来自一个来源的数据来学习不同但相关的目标来源。该框架将允许基于云的CNC:(i)从状态监测信号和过去故障数据的组合中学习,以预测即将发生的故障;(ii)通过利用状态监测数据来校准物理模型(其参数是其输入的函数)来减少不确定性;(iii)在检测到即将发生的故障时,规划从云切换到本地控制器的可行轨迹。该项目将通过以下方式解决现有迁移学习方法的缺点:(i)结合状态监测和过去的故障数据预测故障事件,以及(ii)根据状态监测数据的功能参数校准基于物理的模型。这些方法将在CPS试验台上进行实验评估,该试验台由使用基于云的CNC原型从云控制的3D打印机组成。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional Principal Component Analysis for Extrapolating Multistream Longitudinal Data
- DOI:10.1109/tr.2020.3035084
- 发表时间:2019-03
- 期刊:
- 影响因子:5.9
- 作者:Seokhyun Chung;R. Kontar
- 通讯作者:Seokhyun Chung;R. Kontar
A Physics-Guided Data-Driven Feedforward Tracking Controller for Systems With Unmodeled Dynamics—Applied to 3D Printing
- DOI:10.1109/access.2023.3244194
- 发表时间:2022-06
- 期刊:
- 影响因子:3.9
- 作者:Cheng-Hao Chou;Molong Duan;C. Okwudire
- 通讯作者:Cheng-Hao Chou;Molong Duan;C. Okwudire
A Multi-Stage Approach for Knowledge-Guided Predictions With Application to Additive Manufacturing
- DOI:10.1109/tase.2022.3160420
- 发表时间:2022-07
- 期刊:
- 影响因子:5.6
- 作者:Seokhyun Chung;Cheng-Hao Chou;Xiaozhu Fang;Raed Al Kontar;C. Okwudire
- 通讯作者:Seokhyun Chung;Cheng-Hao Chou;Xiaozhu Fang;Raed Al Kontar;C. Okwudire
Joint Models for Event Prediction From Time Series and Survival Data
- DOI:10.1080/00401706.2020.1832582
- 发表时间:2019-03
- 期刊:
- 影响因子:2.5
- 作者:Xubo Yue;R. Kontar
- 通讯作者:Xubo Yue;R. Kontar
Intelligent feedrate optimization using a physics-based and data-driven digital twin
使用基于物理和数据驱动的数字孪生进行智能进给优化
- DOI:10.1016/j.cirp.2023.04.063
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kim, Heejin;Okwudire, Chinedum E.
- 通讯作者:Okwudire, Chinedum E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chinedum Okwudire其他文献
Comparative LCA of a Linear Motor and Hybrid Feed Drive under High Cutting Loads
- DOI:
10.1016/j.procir.2014.03.055 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Siddharth Kale;Nattasit Dancholvichit;Chinedum Okwudire - 通讯作者:
Chinedum Okwudire
Chinedum Okwudire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chinedum Okwudire', 18)}}的其他基金
Tackling Motion-Command-Induced Nonlinear Vibration in Manufacturing Machines Using Software Compensation
使用软件补偿解决制造机器中运动命令引起的非线性振动
- 批准号:
2054715 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages
合作研究:从根本上理解一种简单、有效和稳健的减轻纳米定位阶段摩擦的方法
- 批准号:
1855354 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Boosting the Speed and Accuracy of Vibration-Prone Manufacturing Machines at Low Cost through Software
通过软件以低成本提高易振动制造机器的速度和精度
- 批准号:
1825133 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Vibration Assisted Nanopositioning: An Enabler of Low-cost, High-throughput Nanotech Processes
振动辅助纳米定位:低成本、高通量纳米技术工艺的推动者
- 批准号:
1562297 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Dynamically Adaptive Feed Drive Systems for Smart and Sustainable Manufacturing
职业:用于智能和可持续制造的动态自适应进给驱动系统
- 批准号:
1350202 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Low-Cost and Energy-Efficient Vibration Reduction in Ultra-Precision Manufacturing Machines using Mode Coupling
使用模式耦合在超精密制造机器中实现低成本且节能的减振
- 批准号:
1232915 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SaTC: CORE: Small: Mitigating Threats of Physical-Domain Signal Injections on Security, Reliability, and Safety of Sensing and Control Systems
SaTC:核心:小型:减轻物理域信号注入对传感和控制系统的安全性、可靠性和安全性的威胁
- 批准号:
2231682 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: An Automated Framework for Mitigating Single-Trace Side-Channel Leakage
SaTC:核心:小型:用于减轻单迹侧通道泄漏的自动化框架
- 批准号:
2241879 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Investigating and Mitigating Harmful Design in User-Generated Virtual World through Design Moderation
SaTC:核心:小型:通过设计审核调查和减轻用户生成的虚拟世界中的有害设计
- 批准号:
2326505 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Mitigating Small Business Finance Risks
减轻小企业财务风险
- 批准号:
22K13432 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CISE-ANR: SHF: Small: CHAMELEON: CompreHending And Mitigating Error in AnaLog ImplEmentations of On-Die Neural Networks
CISE-ANR:SHF:小:CHAMELEON:理解并减轻片上神经网络模拟实现中的错误
- 批准号:
2214934 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135581 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135573 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Understanding and Mitigating the Security Risks of AutoML
SaTC:核心:小型:了解和减轻 AutoML 的安全风险
- 批准号:
2212323 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
HCC: Small: Mitigating Online Risks: Designing Social VR to Prevent New Forms of Online Harassment
HCC:小:降低在线风险:设计社交 VR 以防止新形式的在线骚扰
- 批准号:
2112878 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Mitigating Network Bottlenecks via Programmability for Distributed Machine Learning Systems
CNS 核心:小型:通过分布式机器学习系统的可编程性缓解网络瓶颈
- 批准号:
2008468 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant