NSF-DFG Echem: Future Fuels and Chemicals from Electrocatalytic Upgrading: Advancing Kinetic Understanding using Operando Spectroscopic Approaches and Quantum Chemical Modeling
NSF-DFG Echem:电催化升级的未来燃料和化学品:使用操作光谱方法和量子化学模型促进动力学理解
基本信息
- 批准号:2055068
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project was awarded through the “NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem)" opportunity, a collaborative solicitation that involves the National Science Foundation and Deutsche Forschungsgemeinschaft (DFG). This is a collaborative project between researchers at Michigan State University and Technische Universität Braunschweig (TUB) in Germany. Electrobiofuels are fuels that couple the energy from two renewable sources: biomass and electricity from renewables such as from wind turbines and solar photovoltaics. By cycling the renewable carbon in the 1.3 billion tons/year of plant biomass that will become available in the United States, electrobiofuels could displace fossil carbon-based fuels and the resulting greenhouse gas addition to the atmosphere. Key needs are carbon-, hydrogen- and energy-efficient technologies to convert renewable plant matter into liquid transportation fuels. Carbon efficiency is especially critical; in the U.S., there is only enough carbon in plant biomass to displace about one-half of the 2019 level of petroleum usage, even assuming high harvest yields, perfect conversion, and no net growth in fuel demand. This project addresses a path to renewable hydro¬carbons fuels and chemicals via biomass fast pyro¬lysis, electro¬catalytic hydro¬genation (ECH) in decen¬tral¬ized facilities, and further upgrading at petro¬leum refineries. Much is known about fast pyrolysis and upgrading of pyrolysis bio-oils via thermal hydrogenation, but the use of ECH to partially upgrade and stabilize bio-oil is largely unprecedent¬ed. This project will map the mechanisms of ECH and the factors that limit its performance and to improve accuracy and decrease the uncertainties in ECH reaction and process models. Through MSU’s College of Engineering Detroit Area Pre-College Engineering Summer Programs, high school students will be hosted for engineering science interactive experiences. The PIs will also run an after-school program with the Boys and Girls Club of Lansing, Michigan, to introduce middle school students to electrochemistry. These programs will address the need for biofuels to reduce climate change and discuss with the student researchers the basic principles of electrochemical engineering. Students will also be introduced to computational chemistry software that can be used for molecular modeling. Lesson plans, presentations, and laboratory methods developed as part of the collaboration will be shared amongst the US and German investigators. These Broader Impact activities will positively engage middle and high school students in the US and Germany by demonstrating organic chemical electrosynthesis, a topic not typically seen in high school curriculums. The focus of this German-US collaboration is to study electrocatalytic hydrogenation (ECH) of fast pyrolysis bio-oils as a path to chemical and hydrocarbon fuel precursors. Fast pyrolysis uses heat without oxygen to convert biomass into liquid bio-oil, solid biochar, and combustible gases. However, bio-oil’s corrosiveness and reactive instability limit its use in conventional fuel and chemical processes. ECH saturates carbon-carbon and carbon-oxygen double bonds, as well as the delocalized pi systems of aromatic compounds, in aqueous media at temperatures and pressures much milder than those used in hydroprocessing. Thus, reduction via ECH can stabilize the bio-oil, making it compatible with conventional manufacturing infrastructure. Core activities of the project include electrocatalytic organic transformations, catalyst evaluation by in operando techniques, quantum chemical modeling, reaction engineering and reactor design leading to fundamental knowledge supporting system optimization and scale-up. As part of the research collaboration, US graduate students will conduct in operando measurements in Germany, while German graduate students will perform quantum chemical modeling in the US. With further development, ECH may yield “finished” hydrocarbon fuels, enabling rural production of electrobiofuels. Data from experiments and modeling will be used to update technoeconomic and life cycle analyses, assessing cost feasibility and the potential for “carbon negative” production of liquid fuels. These analyses are needed to de-risk the eventual commercialization of fast pyrolysis and ECH as steps in production of renewable liquid fuels. Such operations are needed to reduce the deleterious effects of climate change while still benefitting from the installed hydrocarbon fuel distribution infrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是通过“NSF-DFG在电合成和电催化方面的牵头机构活动(NSF-DFG eChem)”机会获得的,这是一个涉及国家科学基金会和德国科学基金会(DFG)的合作征集活动。这是密歇根州立大学和德国布伦斯韦格理工大学(TUB)的研究人员合作的项目。电生物燃料是将来自两种可再生能源的能源结合在一起的燃料:生物质和来自可再生能源的电力,如风力涡轮机和太阳能光伏发电。通过对美国将可获得的13亿吨/年植物生物质中的可再生碳进行循环,电生物燃料可以取代化石碳基燃料,以及由此产生的温室气体排放到大气中。关键需求是将可再生植物物质转化为液体运输燃料的碳、氢和能源高效技术。碳效率尤其关键;在美国,即使假设收成高、转化完美、燃料需求没有净增长,植物生物质中的碳也只能取代2019年石油使用量水平的大约一半。该项目致力于通过生物质快速热解、脱碳设施中的电催化加氢(ECH)以及石油炼油厂的进一步升级来实现可再生碳氢燃料和化学品的发展。关于热解生物油的快速热解和热加氢改质已知很多,但使用ECH对生物油进行部分改质和稳定在很大程度上是前所未有的。该项目将绘制ECH的机理和限制其性能的因素,并提高ECH反应和过程模型的准确性和减少不确定性。通过密歇根州立大学底特律工程学院的工程预科暑期计划,高中生将获得工程科学互动体验。PI还将与密歇根州兰辛市的男孩和女孩俱乐部合作开展一个课外项目,向中学生介绍电化学。这些项目将解决生物燃料减少气候变化的需求,并与学生研究人员讨论电化学工程的基本原理。还将向学生介绍可用于分子建模的计算化学软件。作为合作的一部分,美国和德国的研究人员将分享课程计划、演示文稿和实验室方法。这些更广泛的影响活动将通过演示有机化学电合成,积极吸引美国和德国的初中生和高中生,这是一个通常在高中课程中看不到的话题。这次德美合作的重点是研究快速热解生物油的电催化加氢(ECH)作为生产化学和碳氢燃料前体的途径。快速热解利用不含氧气的热量将生物质转化为液态生物油、固体生物炭和可燃气体。然而,生物油的腐蚀性和反应的不稳定性限制了其在常规燃料和化学过程中的使用。ECH使碳-碳双键和碳氧双键以及芳香族化合物的离域pi体系在水介质中饱和,温度和压力比加氢处理中使用的温度和压力要温和得多。因此,通过ECH进行还原可以稳定生物油,使其与传统的制造基础设施兼容。该项目的核心活动包括电催化有机转化、通过操作中技术对催化剂进行评估、量子化学建模、反应工程和反应器设计,从而为系统优化和放大提供基础知识。作为研究合作的一部分,美国研究生将在德国进行歌剧测量,而德国研究生将在美国进行量子化学建模。随着进一步的发展,ECH可能会生产“成品”碳氢燃料,从而使农村生产电生物燃料成为可能。来自实验和建模的数据将被用于更新技术经济和生命周期分析,评估成本可行性和生产“碳负值”液体燃料的潜力。需要这些分析来降低快速热解和环氧乙烷作为可再生液体燃料生产步骤最终商业化的风险。这样的行动是为了减少气候变化的有害影响,同时仍然受益于已安装的碳氢燃料分配基础设施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative life cycle assessment of corn stover conversion by decentralized biomass pyrolysis-electrocatalytic hydrogenation versus ethanol fermentation
分散生物质热解-电催化加氢与乙醇发酵转化玉米秸秆的生命周期比较评估
- DOI:10.1039/d2se00055e
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:Das, Sabyasachi;Anderson, James E.;De Kleine, Robert;Wallington, Timothy J.;Jackson, James E.;Saffron, Christopher M.
- 通讯作者:Saffron, Christopher M.
Technoeconomic analysis of corn stover conversion by decentralized pyrolysis and electrocatalysis
- DOI:10.1039/d1se01881g
- 发表时间:2022-05-06
- 期刊:
- 影响因子:5.6
- 作者:Das, Sabyasachi;Anderson, James E.;Saffron, Christopher M.
- 通讯作者:Saffron, Christopher M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Saffron其他文献
Influence of biochar on microbial communities and anaerobic digestion of aqueous pyrolysis liquid (APL)
生物炭对水热解液(APL)微生物群落及厌氧消化的影响
- DOI:
10.1016/j.biombioe.2025.107891 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:5.800
- 作者:
Sibel Uludag-Demirer;Meicai Xu;Annaliese Marks;Yan Liu;Christopher Saffron;Wei Liao - 通讯作者:
Wei Liao
Christopher Saffron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Saffron', 18)}}的其他基金
Travel: Symposium on Science and Technology Driving the Bioeconomy 2023
旅行:2023年科技驱动生物经济研讨会
- 批准号:
2326689 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Symposium on Science and Technology Driving the Bioeconomy 2020
2020科技驱动生物经济研讨会
- 批准号:
2025807 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Symposium on Science and Technology Driving the Bioeconomy
科技驱动生物经济研讨会
- 批准号:
1923093 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SusChEM: Mapping Reaction Pathways of Biomass Pyrolysis and Catalytic Pyrolysis using Isotopically Labeled Plant Cell Culture
SusChEM:利用同位素标记的植物细胞培养物绘制生物质热解和催化热解的反应路径
- 批准号:
1603347 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
- 批准号:
2140971 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
- 批准号:
2054933 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
- 批准号:
2055097 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
- 批准号:
2055245 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
- 批准号:
2055689 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
- 批准号:
2139971 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
- 批准号:
2140038 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2140211 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant