Complex Dynamics: Renormalization, Geometry, and Algebra

复杂动力学:重整化、几何和代数

基本信息

  • 批准号:
    2055532
  • 负责人:
  • 金额:
    $ 28.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The mathematical area of dynamical systems studies the long-term evolution of physical or mathematical systems. The evolution often has chaotic nature (i.e., sensitive dependence on initial conditions), and fractal sets often come up when studying systems with chaotic behavior. An important fractal set is the Mandelbrot set, which has played a major role in dynamical systems and is one of the most recognizable fractal sets in mathematics. Among central themes of this project is understanding certain self-similarity aspects of the Mandelbrot set. The Mandelbrot set encodes how a quadratic polynomial depends on a parameter. It is a test object for several fundamental problems in dynamics, in particular on how exactly chaos arises, even in simple systems. The proposed activity also covers topics involving higher degree rational maps (i.e., ratios of polynomials). The projects will involve multiple collaborations with early-career researchers, and the training of graduate students. One of the goals of the principal investigator is to promote broader interactions between experts in different branches of mathematics.The principal investigator will continue developing the near-neutral renormalization theory responsible for the self-similarity features of the Mandelbrot set near its main cardioid. Renormalization (interplay between different scales) appears in many branches of mathematics and physics; the exact dictionary is yet to be formalized. In the case of quadratic polynomials, central conjectures are essentially equivalent to establishing rigorous theories of the associated renormalizations (for example, proving hyperbolicity of the renormalization operators). The principal investigator will also study the geometric and topological properties of parameter spaces of higher degree rational maps. A concrete theme is understanding the boundaries of hyperbolic components using near-neutral renormalization. The PI will continue designing the algebraic and algorithmic theories of self-branched coverings of a two-sphere, such as maps obtained from post-critically finite rational maps by forgetting the complex structure. The last topic is closely related to the theories of mapping class groups and self-similar groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统的数学领域研究物理或数学系统的长期演化。进化通常具有混沌性质(即,对初始条件的敏感依赖),分形集经常出现在研究具有混沌行为的系统时。一个重要的分形集是曼德尔布罗特集,它在动力系统中发挥了重要作用,是数学中最知名的分形集之一。该项目的中心主题之一是了解曼德布罗特集的某些自相似性方面。Mandelbrot集编码二次多项式如何依赖于参数。它是动力学中几个基本问题的测试对象,特别是关于混沌是如何产生的,即使是在简单的系统中。拟议的活动还涵盖涉及更高程度的理性地图的主题(即,多项式的比率)。这些项目将涉及与早期职业研究人员的多次合作,以及研究生的培训。首席研究员的目标之一是促进数学不同分支专家之间更广泛的互动。首席研究员将继续发展近中性重整化理论,该理论负责曼德尔布罗特集在其主心形线附近的自相似特征。重整化(不同尺度之间的相互作用)出现在数学和物理的许多分支中;确切的字典尚未正式化。在二次多项式的情况下,中心定理实质上等价于建立相关重整化的严格理论(例如,证明重整化算子的双曲性)。主要研究者还将研究高次有理映射的参数空间的几何和拓扑性质。一个具体的主题是使用近中性重整化来理解双曲分量的边界。PI将继续设计两个球体的自分支覆盖的代数和算法理论,例如通过忘记复杂结构从后临界有限理性映射获得的映射。最后一个课题与映射类群和自相似群的理论密切相关。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dzmitry Dudko其他文献

Algorithmic aspects of branched coverings III/V. Erasing maps, orbispaces, and the Birman exact sequence
分支覆盖的算法方面 III/V。
  • DOI:
    10.4171/ggd/629
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Bartholdi;Dzmitry Dudko
  • 通讯作者:
    Dzmitry Dudko
Matings with laminations
与叠片配合
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dzmitry Dudko
  • 通讯作者:
    Dzmitry Dudko
Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters
西格尔参数附近 Mandelbrot 集的 Pacman 重整化和自相似性
Algorithmic aspects of branched coverings II/V: sphere bisets and decidability of Thurston equivalence
分支覆盖 II/V 的算法方面:球体二集和瑟斯顿等价的可判定性
  • DOI:
    10.1007/s00222-020-00995-2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    L. Bartholdi;Dzmitry Dudko
  • 通讯作者:
    Dzmitry Dudko
MLC at Feigenbaum points
费根鲍姆点的 MLC
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dzmitry Dudko;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich

Dzmitry Dudko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
  • 批准号:
    2154414
  • 财政年份:
    2022
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Beyond Renormalization in Parabolic Dynamics
抛物线动力学中的重正化之外
  • 批准号:
    1600687
  • 财政年份:
    2016
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Continuing Grant
Renormalization and rigidity in one-dimensional dynamics
一维动力学中的重正化和刚性
  • 批准号:
    328565-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Dynamics of complex quantum systems, scaling limits and renormalization
职业:复杂量子系统的动力学、尺度限制和重正化
  • 批准号:
    1151414
  • 财政年份:
    2012
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Renormalization and rigidity in one-dimensional dynamics
一维动力学中的重正化和刚性
  • 批准号:
    328565-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics, spectral analysis, and renormalization in classical and quantum systems
经典和量子系统中的动力学、谱分析和重整化
  • 批准号:
    0940145
  • 财政年份:
    2009
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Density Matrix Renormalization Group Study of Relaxation Dynamics in Strongly Correlated Electron systems
强相关电子系统中弛豫动力学的密度矩阵重整化群研究
  • 批准号:
    21740268
  • 财政年份:
    2009
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Renormalization group analysis of superconductors at zero field: statics and dynamics
零场超导体的重正化群分析:静力学和动力学
  • 批准号:
    80422057
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Research Grants
The renormalization group approach to coexistence dynamics on complex networks with randomness
具有随机性的复杂网络上共存动态的重整化群方法
  • 批准号:
    20540382
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics, spectral analysis, and renormalization in classical and quantum systems
经典和量子系统中的动力学、谱分析和重整化
  • 批准号:
    0704031
  • 财政年份:
    2007
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了