CAREER: Dynamics of complex quantum systems, scaling limits and renormalization

职业:复杂量子系统的动力学、尺度限制和重正化

基本信息

  • 批准号:
    1151414
  • 负责人:
  • 金额:
    $ 41.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

This research project addresses three main topics:(1) The well-posedness theory of the initial value problem for the Gross-Pitaevskii (GP) hierarchy,based on the approach initiated by the PI jointly with N. Pavlovic (UT Austin).A main motivation underlying our work is our aim at generalizing methods from nonlinear dispersive PDE's for the analysis of quantum field theories (QFT's). (2) Problems in non-relativistic Quantum Electrodynamics (QED), in particular relating to the semiclassical motion of electrons, radiation damping, and the problem of ultravioletrenormalization in QED.(3) Derivation of kinetic equations from kinetic scaling limits of the thermal momentum distribution function for interacting electron gases, modeled in dynamical Hartree-Fock theory. These projects involve several ongoing collaborations, including international ones. Study of the GP hierarchy, which emerges in the analysis of interacting Bose gases, bridgessome of the most exciting recent developments in physics (Bose-Einstein condensation)with some of the most impressive recent developments in mathematics (nonlinear dispersive PDE's).Non-relativistic QED is the physical theory of non-relativistic quantum mechanical matter (electrons, atoms, molecules) interacting with the energy quanta (photons) of light, anddescribes processes in a wide spectrum of quintessential areas in technology (chemistry,electronics, modeling of solar panels, etc). The derivation of kinetic equations from quantumdynamics leads to a precise mathematical understanding of classical physics (fluid dynamics) from quantum physics.The educational component of this project involves the training of graduate students in highly multidisciplinary annual thematic programs that provide them with a integrative and specialized understanding oflinks between Analysis, Applied and Computational Mathematics, nonlinear PDE's, and Mathematical Physics. The goal is to provide graduate students with an exceptionally broad understanding of their research fields.
本研究主要包括三个方面的内容:(1)Gross-Pitaevskii(GP)方程组初值问题的适定性理论。Pavlovic(UT Austin):我们工作的一个主要动机是我们的目标是从非线性色散偏微分方程中推广量子场论(QFT)的分析方法。(2)非相对论量子电动力学(QED)中的问题,特别是与电子的半经典运动,辐射阻尼和QED中的紫外重整化问题有关。(3)从动力学Hartree-Fock理论模拟的相互作用电子气体热动量分布函数的动力学标度极限导出动力学方程。这些项目涉及几个正在进行的合作,包括国际合作。对GP体系的研究,出现在相互作用玻色气体的分析中,是物理学中一些最令人兴奋的最新发展的桥梁(玻色-爱因斯坦凝聚)与一些最令人印象深刻的数学最近的发展非相对论QED是研究非相对论量子力学物质的物理理论(电子、原子、分子)与光的能量量子(光子)相互作用,并描述了技术中广泛的典型领域(化学、电子学、太阳能电池板建模等)的过程。从量子动力学推导动力学方程导致从量子物理学的经典物理学(流体动力学)的精确数学理解。该项目的教育部分涉及在高度多学科的年度主题计划中培养研究生,为他们提供分析,应用和计算数学,非线性偏微分方程和数学物理之间的联系的综合和专业理解。 其目标是为研究生提供对他们的研究领域的非常广泛的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Chen其他文献

Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3
3 维小无序情况下安德森模型的定位长度和玻尔兹曼极限
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen
  • 通讯作者:
    Thomas Chen
Boltzmann limit and quasifreeness for a homogeneous Fermion gas in a random medium
随机介质中均质费米子气体的玻尔兹曼极限和准自由度
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen;Itaru Sasaki
  • 通讯作者:
    Itaru Sasaki
Enhanced binding for N-particle system interacting with a scalar bose field I
N 粒子系统与标量玻色场 I 相互作用的增强结合
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen;Itaru Sasaki;佐々木 格;佐々木 格;廣島 文生
  • 通讯作者:
    廣島 文生
Critical manifolds and stability in Hamiltonian systems with non-holonomic constraints
具有非完整约束的哈密顿系统的临界流形和稳定性
  • DOI:
    10.1016/j.geomphys.2003.08.004
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Thomas Chen
  • 通讯作者:
    Thomas Chen
Interferon‐Gamma (IFN‐γ) and Interleukin‐6 (IL‐6) in Peritoneal Fluid and Macrophage‐Conditioned Media of Women With Endometriosis
子宫内膜异位症女性腹腔液和巨噬细胞条件培养基中的干扰素-γ (IFN-γ) 和白细胞介素-6 (IL-6)

Thomas Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Chen', 18)}}的其他基金

Mathematical Analysis of Dispersion and Transport in Quantum Dynamics
量子动力学中色散和输运的数学分析
  • 批准号:
    2009800
  • 财政年份:
    2020
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
Texas Analysis and Mathematical Physics Symposium 2017
2017年德州分析与数学物理研讨会
  • 批准号:
    1739320
  • 财政年份:
    2017
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
EconoMical, PsycHologicAl and Societal Impact of RanSomware (EMPHASIS)
RanSomware 的经济、心理和社会影响 (EMPHASIS)
  • 批准号:
    EP/P011861/1
  • 财政年份:
    2017
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Research Grant
Mathematical Analysis of the Dynamics of Complex Quantum Systems
复杂量子系统动力学的数学分析
  • 批准号:
    1716198
  • 财政年份:
    2017
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
SEEK (Steganalytic vidEo rEsearch frameworK)
SEEK(隐写分析视频研究框架)
  • 批准号:
    EP/N028554/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Research Grant
NRT-DESE: Generating, Analyzing, and Understanding Sensory and Sequencing Information--A Trans-Disciplinary Graduate Training Program in Biosensing and Computational Biology
NRT-DESE:生成、分析和理解感官和测序信息——生物传感和计算生物学跨学科研究生培训项目
  • 批准号:
    1450032
  • 财政年份:
    2015
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
  • 批准号:
    1412627
  • 财政年份:
    2014
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
App Collusion Detection (ACID)
应用程序合谋检测 (ACID)
  • 批准号:
    EP/L022699/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Research Grant
Dynamics of complex quantum systems with randomness and nonlinearities
具有随机性和非线性的复杂量子系统的动力学
  • 批准号:
    1009448
  • 财政年份:
    2010
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
New, GK-12: A Multi-Disciplinary Research and Teaching Program in Biomedical Engineering for Discovery and Understanding of Cell Communication
新产品,GK-12:生物医学工程中的多学科研究和教学项目,旨在发现和理解细胞通讯
  • 批准号:
    0841259
  • 财政年份:
    2009
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
  • 批准号:
    2237542
  • 财政年份:
    2023
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Decoding the dynamics of complex fluids near surfaces and interfaces
职业:解码表面和界面附近复杂流体的动力学
  • 批准号:
    2144020
  • 财政年份:
    2022
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    2308660
  • 财政年份:
    2022
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Duality and Stability in Complex State-Dependent Networked Dynamics
职业:复杂的状态相关网络动态中的二元性和稳定性
  • 批准号:
    1944403
  • 财政年份:
    2020
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    1942665
  • 财政年份:
    2020
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Control of Charge Carrier Dynamics in Complex Thermoelectric Semiconductors
职业:复杂热电半导体中电荷载流子动力学的控制
  • 批准号:
    1555340
  • 财政年份:
    2016
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Continuing Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
  • 批准号:
    1617148
  • 财政年份:
    2015
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
  • 批准号:
    1454012
  • 财政年份:
    2015
  • 资助金额:
    $ 41.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了