Dynamics, spectral analysis, and renormalization in classical and quantum systems

经典和量子系统中的动力学、谱分析和重整化

基本信息

  • 批准号:
    0704031
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on analytical problems in mathematical physics, and consists of three main parts. In the first part, the PI proposes to work on the development of renormalization group (RG) methods for the spectral analysis of the weakly disordered Anderson model. As a concrete application, he plans to study properties of the density of states. Techniques capable of improving the current knowledge about this problem will almost certainly be important for a variety of other essential questions concerning the Anderson model. In the second part, the PI proposes to continue his previous research on the mathematical foundations of non-relativistic Quantum Electrodynamics (QED). In various collaborations, he plans to study aspects of infraparticle scattering theory, and to further develop an isospectral renormalization group method for the analysis of spectral problems in quantum field theory. In the third part, the PI plans to investigate stability questions related to the dynamics of high-dimensional Hamiltonian systems.The projects presented in this proposal address three types of problems in mathematical physics. The Anderson model is widely used for the study of the quantum dynamics of electrons in random media, such as semiconductors. Understanding its predictions on transport properties at small disorders in dimensions 2 or larger poses a major open problem, and the proposed project intends to focus on certain key multiscale aspects of it. Non-relativistic QED describes non-relativistic quantum mechanical matter (electrons, atoms, molecules) interacting with the relativistic quantized electromagnetic radiation field (photons). It models low-energy processes in molecular physics and chemistry with excellent accuracy. Because photons are massless, electrons always bind an infinite number of low energetic (soft) photons, thus forming a bound state referred to as an infraparticle. Accommodating the latter into the standard framework of quantum field theory is extremely difficult, because of the so-called infrared catastrophe (perturbative computations typically diverge due to the soft photon cloud). Building on previous work of the PI and his collaborators, the proposed projects intend to further develop the scattering theory of infraparticles. Moreover, the PI proposes to investigate aspects of the dynamics and stability of Hamiltonian systems with a large number of degrees of freedom, which describe, for instance, the lattice vibrations of a classical crystal.
该项目重点关注数学物理中的分析问题,由三个主要部分组成。在第一部分中,PI 建议开发重整化群 (RG) 方法,用于弱无序安德森模型的谱分析。 作为具体应用,他计划研究态密度的性质。 能够提高当前有关该问题的知识的技术几乎肯定对于有关安德森模型的各种其他基本问题很重要。 在第二部分中,PI建议继续之前对非相对论量子电动力学(QED)数学基础的研究。 在各种合作中,他计划研究粒子内散射理论的各个方面,并进一步开发用于分析量子场论中光谱问题的等谱重整化群方法。 在第三部分中,PI 计划研究与高维哈密顿系统动力学相关的稳定性问题。本提案中提出的项目解决了数学物理中的三类问题。安德森模型广泛用于研究随机介质(例如半导体)中电子的量子动力学。 了解其对 2 维或更大维度的小无序的输运特性的预测提出了一个重大的开放问题,并且拟议的项目打算重点关注其某些关键的多尺度方面。 非相对论 QED 描述非相对论量子力学物质(电子、原子、分子)与相对论量子化电磁辐射场(光子)相互作用。它以极高的精度模拟分子物理和化学中的低能过程。由于光子是无质量的,因此电子总是结合无限数量的低能(软)光子,从而形成称为粒子下的束缚态。 由于所谓的红外灾难(微扰计算通常由于软光子云而发散),将后者纳入量子场论的标准框架极其困难。基于 PI 及其合作者之前的工作,拟议的项目旨在进一步发展次粒子的散射理论。 此外,PI 提议研究具有大量自由度的哈密顿系统的动力学和稳定性方面,例如描述经典晶体的晶格振动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Chen其他文献

Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3
3 维小无序情况下安德森模型的定位长度和玻尔兹曼极限
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen
  • 通讯作者:
    Thomas Chen
Boltzmann limit and quasifreeness for a homogeneous Fermion gas in a random medium
随机介质中均质费米子气体的玻尔兹曼极限和准自由度
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen;Itaru Sasaki
  • 通讯作者:
    Itaru Sasaki
Enhanced binding for N-particle system interacting with a scalar bose field I
N 粒子系统与标量玻色场 I 相互作用的增强结合
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Chen;Itaru Sasaki;佐々木 格;佐々木 格;廣島 文生
  • 通讯作者:
    廣島 文生
Interferon‐Gamma (IFN‐γ) and Interleukin‐6 (IL‐6) in Peritoneal Fluid and Macrophage‐Conditioned Media of Women With Endometriosis
子宫内膜异位症女性腹腔液和巨噬细胞条件培养基中的干扰素-γ (IFN-γ) 和白细胞介素-6 (IL-6)
Critical manifolds and stability in Hamiltonian systems with non-holonomic constraints
具有非完整约束的哈密顿系统的临界流形和稳定性
  • DOI:
    10.1016/j.geomphys.2003.08.004
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Thomas Chen
  • 通讯作者:
    Thomas Chen

Thomas Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Chen', 18)}}的其他基金

Mathematical Analysis of Dispersion and Transport in Quantum Dynamics
量子动力学中色散和输运的数学分析
  • 批准号:
    2009800
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Texas Analysis and Mathematical Physics Symposium 2017
2017年德州分析与数学物理研讨会
  • 批准号:
    1739320
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
EconoMical, PsycHologicAl and Societal Impact of RanSomware (EMPHASIS)
RanSomware 的经济、心理和社会影响 (EMPHASIS)
  • 批准号:
    EP/P011861/1
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Grant
Mathematical Analysis of the Dynamics of Complex Quantum Systems
复杂量子系统动力学的数学分析
  • 批准号:
    1716198
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
SEEK (Steganalytic vidEo rEsearch frameworK)
SEEK(隐写分析视频研究框架)
  • 批准号:
    EP/N028554/1
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Grant
NRT-DESE: Generating, Analyzing, and Understanding Sensory and Sequencing Information--A Trans-Disciplinary Graduate Training Program in Biosensing and Computational Biology
NRT-DESE:生成、分析和理解感官和测序信息——生物传感和计算生物学跨学科研究生培训项目
  • 批准号:
    1450032
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
  • 批准号:
    1412627
  • 财政年份:
    2014
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
App Collusion Detection (ACID)
应用程序合谋检测 (ACID)
  • 批准号:
    EP/L022699/1
  • 财政年份:
    2014
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Grant
CAREER: Dynamics of complex quantum systems, scaling limits and renormalization
职业:复杂量子系统的动力学、尺度限制和重正化
  • 批准号:
    1151414
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Dynamics of complex quantum systems with randomness and nonlinearities
具有随机性和非线性的复杂量子系统的动力学
  • 批准号:
    1009448
  • 财政年份:
    2010
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055072
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Transformation dynamics of spatio-temporal coherence of high-harmonic generation in terms of complex spectral analysis
复谱分析中高次谐波时空相干性的变换动力学
  • 批准号:
    18K03496
  • 财政年份:
    2018
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applied Spectral Analysis in Population Dynamics, Biophysics, and Physical Chemistry
群体动力学、生物物理学和物理化学中的应用光谱分析
  • 批准号:
    1714402
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Thermodynamic formalism for non-compact spaces with applications in conformal dynamics
非紧空间的热力学形式及其在共形动力学中的应用
  • 批准号:
    17K14203
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamics, spectral analysis, and renormalization in classical and quantum systems
经典和量子系统中的动力学、谱分析和重整化
  • 批准号:
    0940145
  • 财政年份:
    2009
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
ADAPTIVE GRID METHOD BASED ON ARTIFICIAL INTELLIGENCE FOR COMPUTATIONAL FLUID DYNAMICS OF NEXT GENERATION
基于人工智能的下一代计算流体动力学自适应网格方法
  • 批准号:
    14550152
  • 财政年份:
    2002
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Applications of Computational Methods of Spectral Analysis: From Quantum Dynamics Calculations to NMR Data Processing.
光谱分析计算方法的发展和应用:从量子动力学计算到核磁共振数据处理。
  • 批准号:
    0108823
  • 财政年份:
    2001
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
FOR 399: Spectral Analysis, Asymptotic Distributions and Stochastic Dynamics
FOR 399:谱分析、渐近分布和随机动力学
  • 批准号:
    5467294
  • 财政年份:
    2000
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Units
Dynamics in Multimode Lasers and Their Applications
多模激光器动力学及其应用
  • 批准号:
    07455040
  • 财政年份:
    1995
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了