Intermetallic and Extraordinary Bonds of Beryllium and the Alkaline Earth Metals

铍和碱土金属的金属间键和非常键

基本信息

  • 批准号:
    2055579
  • 负责人:
  • 金额:
    $ 45.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

In this project, supported by the Chemical Structure, Dynamics and Mechanisms-A (CSDM-A) Program in the Division of Chemistry, Professor Michael C. Heaven and his research group at Emory University are investigating the unusual chemical bonds formed by atoms called alkaline earth metals. Metallic and intermetallic bonding of the alkaline-earth metals is a subject of both conceptual and practical importance. The bonds formed by alkaline earth metals show erratic trends, with the most unpredictable behavior exhibited by molecules that contain the element beryllium (Be). The chemistry of Be is under-explored owing to its toxicity, but its compounds exhibit unique and valuable properties. For example, beryllium alloys are used as lightweight structural materials due to their exceptional strength to weight ratios. The remarkable durability of the metal is reflected by the fact that it is used as a plasma-facing material in extremely high-temperature fusion reactors. A common type of chemical bond is called a covalent single bond, where two electrons are shared by two atoms, each atom of the pair typically contributing one electron to the bond. Beryllium atoms are unusual in that they often form what are called dative covalent bonds, where both bonding electrons are provided by the other atom. Professor Heaven and his research group use specialized instrumentation to characterize the structure and properties of small molecules containing alkaline earth metals, including bonds with another type of atom called alkali metals. This research project provides new insights into chemical bonding in general, including data that can be used to test new theories to describe bonding and to help in the prediction of the properties of novel compounds for technological applications. The molecules under examination include diatomics that have been proposed as the basic units (called qubits) for quantum information storage and quantum computing. The graduate students engaged in this project receive advanced training in both experimental and theoretical chemistry. Undergraduate students from institutions in the Atlanta University Center Consortium (AUCC) are also involved in the project, providing research opportunities for undergraduate students from historically Black colleges and universities (HBCUs). Undergraduate researchers receive technical training related to the investigation of bonding mechanisms, and also develop important career skills, such as networking, manuscript preparation, and oral presentation of research results.At present, the experimental data needed to evaluate high-level quantum chemical models for compounds containing beryllium and the heavier alkaline earth metals are lacking. This validation is necessary to establish confidence in the computational methods that are used to identify compounds with valuable physical and chemical properties. Experimental studies of prototypical compounds are the primary objectives of this research. Spectroscopic techniques, including laser-induced fluorescence (LIF) and pulsed-field ionization-zero electron kinetic energy (PFI-ZEKE) measurements, are being applied to gas-phase molecules and ions to obtain structural and thermodynamic properties. The species being examined include LiBeLi, which is predicted to have a 3-center 4-electron bond, Li4Be2, where the Be2 sub-unit is thought to have two sigma-bonds with no pi-bonding contribution, and Li6Be2 where quantum calculations predict an unprecedented Be-Be triple bond. In addition to the experimental spectroscopic work, this project employs computational studies that utilize complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods. The research provides graduate, undergraduate, and post-doctoral research students with advanced training in experimental and theoretical methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在本研究中,由化学系化学结构、动力学和机理-A(CSDM-A)项目资助,Michael C。Heaven和他在埃默里大学的研究小组正在研究由碱土金属原子形成的不寻常的化学键。碱土金属的金属键合和金属间键合是一个既有理论意义又有实际意义的课题。由碱土金属形成的键显示出不稳定的趋势,其中包含元素铍(Be)的分子表现出最不可预测的行为。由于其毒性,Be的化学性质尚未得到充分研究,但其化合物具有独特和有价值的性质。例如,铍合金由于其优异的强度重量比而被用作轻质结构材料。这种金属卓越的耐用性反映在它被用作极高温聚变反应堆中的等离子体表面材料。一种常见类型的化学键被称为共价单键,其中两个电子由两个原子共享,每对原子通常为键贡献一个电子。铍原子的不寻常之处在于它们经常形成所谓的配价共价键,其中两个成键电子都由另一个原子提供。Heaven教授和他的研究小组使用专门的仪器来表征含有碱土金属的小分子的结构和性质,包括与另一种称为碱金属的原子的键。该研究项目提供了一般化学键合的新见解,包括可用于测试新理论以描述键合的数据,并有助于预测新化合物的特性以用于技术应用。正在研究的分子包括已被提议作为量子信息存储和量子计算的基本单位(称为量子比特)的量子化学。 从事该项目的研究生接受实验和理论化学的高级培训。来自亚特兰大大学中心联盟(AUCC)机构的本科生也参与了该项目,为来自历史上的黑人学院和大学(HBCU)的本科生提供研究机会。本科生研究人员接受与键合机制研究相关的技术培训,并培养重要的职业技能,如建立网络、撰写论文和口头陈述研究结果。目前,缺乏评估含铍和较重碱土金属化合物的高水平量子化学模型所需的实验数据。这种验证是必要的,以建立用于识别具有有价值的物理和化学性质的化合物的计算方法的信心。原型化合物的实验研究是本研究的主要目标。光谱技术,包括激光诱导荧光(LIF)和脉冲场电离零电子动能(PFI-ZEKE)测量,正在应用于气相分子和离子,以获得结构和热力学性质。正在研究的物种包括LiBeLi,预计具有3中心4电子键,Li 4 Be 2,其中Be 2亚单元被认为具有两个sigma键,没有π键贡献,和Li 6 Be 2,量子计算预测前所未有的Be-Be三键。除了实验光谱工作,该项目采用计算研究,利用完整的主动空间自洽场(CASSCF)和多参考组态相互作用(MRCI)的方法。该研究为研究生、本科生和博士后研究生提供实验和理论方法方面的高级培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic Spectroscopy and Photoionization of LiBe
LiBe 的电子能谱和光电离
  • DOI:
    10.1021/acs.jpca.1c07014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Persinger, Thomas D.;Han, Jiande;Heaven, Michael C.
  • 通讯作者:
    Heaven, Michael C.
Direct observation of the Yb(4f136s2)F states and accurate determination of the YbF ionization energy
直接观察 Yb(4f136s2)F 态并准确测定 YbF 电离能
  • DOI:
    10.1103/physreva.106.062804
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Persinger, Thomas D.;Han, Jiande;Le, Anh T.;Steimle, Timothy C.;Heaven, Michael C.
  • 通讯作者:
    Heaven, Michael C.
Increase of the barium ion-trap lifetime via photodissociation
通过光解增加钡离子阱的寿命
  • DOI:
    10.1103/physreva.104.063103
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wu, Hao;Mills, Michael;West, Elizabeth;Heaven, Michael C.;Hudson, Eric R.
  • 通讯作者:
    Hudson, Eric R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Heaven其他文献

Michael Heaven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Heaven', 18)}}的其他基金

Intermetallic and Extraordinary Bonds of Beryllium and the Alkaline Earth Metals
铍和碱土金属的金属间键和非常键
  • 批准号:
    1900555
  • 财政年份:
    2019
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Understanding why the chemistry of Beryllium is different
了解为什么铍的化学性质不同
  • 批准号:
    1565912
  • 财政年份:
    2016
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
The unique bonding characteristics of beryllium and the Group IIA metals
铍和 IIA 族金属的独特结合特性
  • 批准号:
    1265586
  • 财政年份:
    2013
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Unusual bonding mechanisms in Beryllium clusters
铍簇中不寻常的键合机制
  • 批准号:
    0956442
  • 财政年份:
    2010
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Unusual Bonding Mechanisms and Reactions in Clusters
簇中不寻常的键合机制和反应
  • 批准号:
    0518094
  • 财政年份:
    2005
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Spectroscopic Investigation of the Role of Long-range Forces in Elementary Reactions
长程力在基元反应中作用的光谱研究
  • 批准号:
    0213313
  • 财政年份:
    2002
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Spectroscopy and Dynamics of Open-Shell Complexes
开壳配合物的光谱学和动力学
  • 批准号:
    9810106
  • 财政年份:
    1998
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Spectroscopy and Dynamics of Open-Shell van der Waals Molecules
开壳范德华分子的光谱学和动力学
  • 批准号:
    9320094
  • 财政年份:
    1994
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Spectroscopy and Dynamics of Open-Shell van der Waals Molecules
开壳范德华分子的光谱学和动力学
  • 批准号:
    9016520
  • 财政年份:
    1991
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235710
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235711
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235712
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Extraordinary Radiative Transfer through Hyperbolic Material and at Interface
通过双曲材料和界面的非凡辐射传输
  • 批准号:
    2234399
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
  • 批准号:
    10698705
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
Seeking and Teaching Extraordinary Science Majors to Become Exemplary K-12 Educators
寻找并教授杰出的科学专业学生,使其成为模范 K-12 教育工作者
  • 批准号:
    2150788
  • 财政年份:
    2022
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
THE EXTRAORDINARY CONNECTIONS BETWEEN FLAVONOL AND BENZOATE METABOLISM
黄酮醇和苯甲酸酯代谢之间的非凡联系
  • 批准号:
    2216747
  • 财政年份:
    2022
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了