Regularity and Singularity Issues in Geometric Variational Problems

几何变分问题中的正则性和奇异性问题

基本信息

  • 批准号:
    2055686
  • 负责人:
  • 金额:
    $ 33.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Geometric variational problems are used to describe the behavior of systems driven by surface tension energies, like crystals or soap bubbles. Classical examples are the isoperimetric problem (find the solid of minimal perimeter enclosing a given volume) and the Plateau problem (finding the surface of minimal area spanning a given boundary curve). In the last 50 years, geometric variational problems have found a number of surprising applications in both pure and applied mathematics. Their solutions can describe the equilibrium configurations of physical systems in Mathematical Physics, the behavior of black holes in General Relativity, or they can provide preferred representatives in homology and homotopy classes in Differential Topology. For solutions of geometric variational problems, the presence of singularities is unavoidable and it is linked to the physical behavior of the systems they model or to the concentration of topological obstructions in geometric problems. A fine description of the regular and singular set is of fundamental importance in our understanding of the underlying problem. This project aims to enhance our understanding of the qualitative and quantitative behavior of solutions of geometric variational problems by addressing a series of basic questions concerning their regularity and the description of their singularities. The answer to these questions will require the development of new methods and techniques, which will also be valuable in other areas of mathematics. The project will provide research training opportunities for graduate and undergraduate students. Despite the great amount of study dedicated to geometric variational problems, several basic questions concerning the regular and singular behavior of their solutions are still poorly understood. This project is intended to address these questions and to develop new tools and techniques to tackle them. The project involves work on four deeply interconnected directions of research: boundary regularity for mass minimizing currents, regularity of critical points of anisotropic surface tensions, regularity of solutions to spectral optimization and free boundary problems, and the structure of PDE constrained measures. Their study will require the interaction of techniques coming from different areas of mathematics, such as Partial Differential Equations (PDE), Geometric Analysis, Geometric Measure Theory, Topology, and Harmonic Analysis, as well as the introduction of new ones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何变分问题用于描述由表面张力能驱动的系统的行为,如晶体或肥皂泡。经典的例子是等周问题(找到包围给定体积的最小周长的固体)和高原问题(找到跨越给定边界曲线的最小面积的表面)。在过去的50年里,几何变分问题在纯数学和应用数学中都有着令人惊讶的应用。它们的解可以在数学物理中描述物理系统的平衡构型,在广义相对论中描述黑洞的行为,或者在微分拓扑学中提供同调和同伦类的优选代表。对于几何变分问题的解,奇点的存在是不可避免的,它与它们所模拟的系统的物理行为或几何问题中拓扑障碍的浓度有关。正则集和奇异集的精细描述对于我们理解根本问题具有根本的重要性。该项目旨在通过解决一系列关于几何变分问题的正则性和奇异性描述的基本问题,提高我们对几何变分问题解的定性和定量行为的理解。这些问题的答案将需要发展新的方法和技术,这在数学的其他领域也将是有价值的。该项目将为研究生和本科生提供研究培训机会。尽管大量的研究致力于几何变分问题,几个基本的问题,他们的解决方案的规则和奇异行为仍然知之甚少。该项目旨在解决这些问题,并开发新的工具和技术来解决这些问题。该项目涉及四个相互关联的研究方向:质量最小化电流的边界正则性,各向异性表面张力临界点的正则性,频谱优化和自由边界问题的解决方案的正则性,以及PDE约束措施的结构。他们的研究将需要来自不同数学领域的技术的相互作用,如偏微分方程(PDE),几何分析,几何测量理论,拓扑学和谐波分析,以及引入新的技术。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guido De Philippis其他文献

From volume cone to metric cone in the nonsmooth setting
非光滑设置中从体积锥到公制锥
Kinetic Formulation and Uniqueness for Scalar Conservation Laws with Discontinuous Flux
具有不连续通量的标量守恒定律的动力学公式和唯一性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Crasta;V. De Cicco;Guido De Philippis
  • 通讯作者:
    Guido De Philippis
Existence Results for Minimizers of Parametric Elliptic Functionals
参数椭圆泛函极小化的存在性结果
  • DOI:
    10.1007/s12220-019-00165-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guido De Philippis;Antonio De Rosa;Francesco Ghiraldin
  • 通讯作者:
    Francesco Ghiraldin
The behavior of harmonic functions at singular points of $$\mathsf {RCD}$$ spaces
  • DOI:
    10.1007/s00229-021-01365-9
  • 发表时间:
    2022-03-03
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Guido De Philippis;Jesús Núñez-Zimbrón
  • 通讯作者:
    Jesús Núñez-Zimbrón
The anisotropic min‐max theory: Existence of anisotropic minimal and CMC surfaces
各向异性最小-最大理论:各向异性最小表面和 CMC 表面的存在

Guido De Philippis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Continuing Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
  • 批准号:
    23H05437
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
  • 批准号:
    23K03106
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
  • 批准号:
    2304692
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
  • 批准号:
    23K19016
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了