Excellence in Research: Development of two-dimensional (2D) molybdenum disulfide (MoS2) and molybdenum selenium (MoSe2) thin-film nanomaterials and nanoelectronic devices

卓越研究:二维(2D)二硫化钼(MoS2)和钼硒(MoSe2)薄膜纳米材料和纳米电子器件的开发

基本信息

  • 批准号:
    2100748
  • 负责人:
  • 金额:
    $ 49.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Two-dimensional (2D) semiconductor nanomaterials are promising electronic nanomaterials and could be used for future high-speed nanoelectronics because of their superior electrical properties. In this project, 2D molybdenum disulfide (MoS2) and molybdenum selenium (MoSe2) semiconductor thin-film nanomaterials will be grown using plasma-enhanced atomic layer deposition. The 2D molybdenum disulfide and molybdenum selenium thin-film nanomaterials will be used to fabricate 2D nanomaterial-based field-effect transistors and integrated electronic devices. The device fabrication is compatible with the current standard fabrication of silicon integrated devices for computer chips and could lead to 2D nanomaterial-based computer chips with much smaller transistors. Semiconductor devices represent a multi-trillion-dollar industry. The 2D nanomaterial-based nanoelectronic devices could contribute to the rapidly growing industry of semiconductor and nano-manufacturing and are potential alternatives to silicon-based electronic devices. This project can have great impacts on US and global societies and provide many societal benefits. The primary educational goal of this program is to integrate the research objectives to enhance the educational experiences of students. Minority graduate and undergraduate students will be mentored to perform research in nanofabrication and nanotechnology in the project. The project will also offer summer research opportunities for high school students. The research objective of this project is to grow two-dimensional (2D) molybdenum disulfide (MoS2) and molybdenum selenium (MoSe2) semiconductor thin-film nanomaterials using remote plasma-enhanced atomic layer deposition (PE-ALD) and fabricate 2D nanomaterial-based nanoelectronic devices. An innovative localized growth method will be used to grow the 2D nanomaterials with higher ordered nanolayers and nanostructures. Unlike the conventional growth of 2D nanomaterials which grow the nanomaterials on a flat and smooth surface of substrate, the innovative localized growth will use nano-patterned substrates to grow the 2D nanomaterials with higher-ordered nanolayers and nanostructures and would allow substrate materials such as hafnium oxide and zirconium oxide for the growth of the 2D nanomaterials. The 2D nanomaterials will then be used as the active channel material to fabricate 2D nanomaterial-based field-effect transistors (FETs) and integrated electronic circuits such as inverters and oscillators using cleanroom-based micro and nanofabrication techniques. The 2D molybdenum disulfide and molybdenum selenium nanomaterials are semiconductor materials with appropriate band gaps for electronic devices applications and have unique electrical properties such as ballistic quantum transport, which enable the 2D nanomaterial-based FETs to have higher current on/off ratios and to operate faster without energy dissipation. Nanoelectronic devices built on the 2D materials offer many benefits for further miniaturization beyond Moore’s Law and the possibility to revolutionize future electronic technologies. This project is potentially transformative and will create a new 2D nanomaterial and device fabrication paradigm. The project will greatly benefit the research community and semiconductor industry by providing new approaches for the fabrication of 2D nanomaterials and nanoelectronic devices. The innovative localized growth method can effectively grow nanolayered 2D thin-film materials with higher-ordered nanolayers and nanostructures while remote plasma-enhanced atomic layer deposition can offer new opportunities to grow 2D nanomaterials with improved electrical properties, leading to higher-performance functional 2D nanoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
二维半导体纳米材料具有优良的上级电学性能,是一种很有前途的电子纳米材料,可用于未来的高速纳米电子学。在这个项目中,2D二硫化钼(MoS 2)和钼硒(MoSe 2)半导体薄膜纳米材料将使用等离子体增强原子层沉积生长。二维二硫化钼和钼硒薄膜纳米材料将用于制造二维纳米场效应晶体管和集成电子器件。该器件制造与当前用于计算机芯片的硅集成器件的标准制造兼容,并可能导致具有更小晶体管的2D纳米材料计算机芯片。半导体器件代表了数万亿美元的产业。基于2D纳米材料的纳米电子器件可以为快速增长的半导体和纳米制造业做出贡献,并且是硅基电子器件的潜在替代品。这个项目可以对美国和全球社会产生巨大影响,并提供许多社会效益。该计划的主要教育目标是整合研究目标,以提高学生的教育经验。少数民族研究生和本科生将被指导在纳米纤维和纳米技术的项目进行研究。该项目还将为高中生提供暑期研究机会。本项目的研究目标是利用远程等离子体增强原子层沉积(PE-ALD)技术生长二维(2D)二硫化钼(MoS 2)和钼硒(MoSe 2)半导体薄膜纳米材料,并制备基于2D纳米材料的纳米电子器件。一种创新的局部生长方法将用于生长具有更高有序纳米层和纳米结构的2D纳米材料。与传统的2D纳米材料生长不同,传统的2D纳米材料生长在平坦光滑的基底表面上,创新的局部生长将使用纳米图案化的基底来生长具有更高有序纳米层和纳米结构的2D纳米材料,并且将允许诸如氧化铪和氧化锆的基底材料用于2D纳米材料的生长。然后,2D纳米材料将被用作有源沟道材料,以使用基于洁净室的微纳米制造技术制造基于2D纳米材料的场效应晶体管(FET)和集成电子电路,如逆变器和振荡器。2D二硫化钼和钼硒纳米材料是具有适合电子器件应用的带隙的半导体材料,并且具有独特的电学性质,例如弹道量子传输,这使得基于2D纳米材料的FET具有更高的电流开/关比,并且在没有能量耗散的情况下更快地操作。基于二维材料构建的纳米电子器件为进一步小型化提供了许多好处,超越了摩尔定律,并有可能彻底改变未来的电子技术。该项目具有潜在的变革性,将创造一种新的2D纳米材料和器件制造模式。该项目将通过为2D纳米材料和纳米电子器件的制造提供新的方法,使研究界和半导体行业受益匪浅。创新的局部生长方法可以有效地生长具有更高有序纳米层和纳米结构的纳米层2D薄膜材料,而远程等离子体增强原子层沉积可以提供新的机会来生长具有改善的电性能的2D纳米材料,导致更高的-该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的支持,知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD)
  • DOI:
    10.1063/5.0153256
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhigang Xiao;G. Doerk;K. Kisslinger;A. Jones;Rebhadevi Monikandan
  • 通讯作者:
    Zhigang Xiao;G. Doerk;K. Kisslinger;A. Jones;Rebhadevi Monikandan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhigang Xiao其他文献

High-moisture extrusion of rice bran-peanut proteins: Changes in structural properties and antioxidant activity simulating gastrointestinal digestion
米糠-花生蛋白的高水分挤压:模拟胃肠消化过程中结构特性和抗氧化活性的变化
Fatigue performance of CFRP-strengthened steel pipes with semi-elliptical surface cracks
带有半椭圆形表面裂纹的碳纤维增强塑料加固钢管的疲劳性能
  • DOI:
    10.1016/j.engstruct.2025.120774
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Tao Chen;Zhuxuan Li;Xiang-Lin Gu;Zhigang Xiao;Wensu Chen;Haoran Zuo
  • 通讯作者:
    Haoran Zuo
Impact of immobilization technology in industrial and pharmaceutical applications
  • DOI:
    10.1007/s13205-019-1969-0
  • 发表时间:
    2019-11-08
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Mohamed E. Hassan;Qingyu Yang;Zhigang Xiao;Lu Liu;Na Wang;Xiaotong Cui;Liu Yang
  • 通讯作者:
    Liu Yang
TEM studies of cross sections of oxidized Fe-25Cr-6Al-La alloy
  • DOI:
    10.1007/bf01058245
  • 发表时间:
    1995-10-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Guowei Du;Zhiliang Yann;Jiamin Cai;Zhigang Xiao
  • 通讯作者:
    Zhigang Xiao
Adhesion of TiC/Fe Cermet Interface with C Vacancy: A First-Principles Study
TiC/Fe 金属陶瓷界面与 C 空位的粘附:第一性原理研究
  • DOI:
    10.4028/www.scientific.net/amr.415-417.368
  • 发表时间:
    2011-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Wu;邹正光;Yufang Shen;Kai Liu;Fei Long;Zhigang Xiao
  • 通讯作者:
    Zhigang Xiao

Zhigang Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhigang Xiao', 18)}}的其他基金

Collaborative Research: RUI: Natural Bio-organic Resistive Random Access Memory Based Synaptic Devices
合作研究:RUI:基于天然生物有机电阻随机存取存储器的突触器件
  • 批准号:
    2105388
  • 财政年份:
    2021
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
DCL:HBCU:EAGER: Development of Wafer-Scale Fabrication of Carbon-Based Integrated Electronic Devices
DCL:HBCU:EAGER:碳基集成电子器件晶圆级制造的发展
  • 批准号:
    1740687
  • 财政年份:
    2017
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Advanced E-Beam Evaporation Thin Film Deposition System for Research in Micro and Nanofabrication
MRI:购买先进的电子束蒸发薄膜沉积系统用于微纳加工研究
  • 批准号:
    1229312
  • 财政年份:
    2012
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Continuing Grant
Excellence in Research: Developmental regulation of WDR77 coordinates prostate growth and differentiation during the development through puberty
卓越研究:WDR77 的发育调节可协调青春期发育期间的前列腺生长和分化
  • 批准号:
    2300390
  • 财政年份:
    2023
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
Excellence in Research: An investigation of the effects of Nicandra physalodes on the growth and development of weeds
卓越研究:Nicandra physalodes 对杂草生长发育影响的调查
  • 批准号:
    2302684
  • 财政年份:
    2023
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
Excellence in Research: Development of a Fluorescent Assay to Measure LAT1 Transport
卓越的研究:开发测量 LAT1 转运的荧光测定法
  • 批准号:
    2301301
  • 财政年份:
    2023
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
Excellence in Research: The role of Neuregulin-1 in proliferation and differentiation of brain cortical neuronal stem cells during fetal development
卓越研究:Neuregulin-1 在胎儿发育过程中脑皮质神经元干细胞增殖和分化中的作用
  • 批准号:
    2200534
  • 财政年份:
    2022
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
Excellence in Research: Human Visual Perception of Changes in Smoke and Flame Cues during Early Fire Development
卓越的研究:早期火灾发展过程中烟雾和火焰线索变化的人类视觉感知
  • 批准号:
    2200416
  • 财政年份:
    2022
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
South Eastern Mediterranean Excellence Development in FIre REsearch (SEMEDFIRE)
东南地中海火灾研究卓越发展 (SEMEDFIRE)
  • 批准号:
    10058103
  • 财政年份:
    2022
  • 资助金额:
    $ 49.12万
  • 项目类别:
    EU-Funded
Excellence in Research: Development of a Non-Fluorinated Etching Procedure to Prepare MXene Hybrid Materials for Composite Applications
卓越研究:开发非氟化蚀刻工艺来制备用于复合材料应用的 MXene 混合材料
  • 批准号:
    2101001
  • 财政年份:
    2021
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Excellence in Research: Impact of Gbx2 on neural crest cells during neuronal, craniofacial and cardiovascular development
合作研究:卓越研究:Gbx2 对神经元、颅面和心血管发育过程中神经嵴细胞的影响
  • 批准号:
    1956450
  • 财政年份:
    2020
  • 资助金额:
    $ 49.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了