Particle Electrokinetics in Non-Newtonian Microfluidics
非牛顿微流体中的粒子电动学
基本信息
- 批准号:2100772
- 负责人:
- 金额:$ 30.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microfluidic devices have been increasingly used over the past two decades for numerous chemical, biomedical and environmental applications. Many applications require precise placement and transport of particles (ranging from macromolecules to viruses and cells, from colloids to beads, etc.) in microchannels. The application of an electric field is the method of choice to control particle motions in microfluidic systems because of the ease, precision, autonomy of operation and integration with other components for analysis. The electric field can induce motion of a charged particle (electrophoresis) or the motion of the surrounding fluid (electroosmosis). This so-called electrokinetic particle motion has been extensively studied in simple liquids. However, it has not been studied extensively in complex fluids such as polymer solutions, colloidal solutions, biological fluids, which are examples of non-Newtonian fluids that exhibit unusual properties in flow. The goal of this project is to develop a fundamental knowledge of electrokinetic particle motion in polymer solutions through microchannels. The research will delinate effects of fluid elasticity and shear-thinning effects on electrophoretic motion in the direction of the channel axis and lateral migration of particles toward the channel walls in order to find ways to control particle motions. The experiments will be extended to large electric fields that have not yet been considered for non-Newtonian fluid systems. The research will be intimately weaved into undergraduate and graduate curricula at Clemson University and will form the basis for activities developed for high school students in South Carolina. Undergraduate and high school students, especially those from underrepresented groups, will be actively involved in the project through various programs available in the department, university, and state.This project will be the first comprehensive study of electrokinetic particle motion in non-Newtonian fluids through microchannels. A systematic experimental investigation of both the axial motion and lateral migration of particles will be performed in the flow of polymer solutions through straight rectangular microchannels under (1) pure DC electric field, (2) DC electric field imposed with a pressure gradient, and (3) pure AC electric field with a magnitude of up to 1 MV/m (one order of magnitude higher than in typical electrokinetic microfluidics) in each case. Five types of common polymer solutions with distinct rheological properties will be tested and compared against Newtonian fluids. The experiments will investigate effects of fluid elasticity and shear thinning, individually and in combination, on the linear and nonlinear electrophoretic particle motions as well as the accompanying lateral particle migration. The experimental data of particle mobility and migration will be compared with the predictions of theoretical formulae and numerical simulations, if available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,微流体装置越来越多地用于许多化学、生物医学和环境应用。许多应用需要精确放置和输送颗粒(从大分子到病毒和细胞,从胶体到珠子等)。在微通道中。由于操作简单、精确、自主以及与其他分析组件的集成,电场的应用是控制微流体系统中颗粒运动的首选方法。 电场可以引起带电粒子的运动(电泳)或周围流体的运动(电渗)。 这种所谓的电动粒子运动已经在简单液体中得到了广泛的研究。然而,它还没有被广泛研究,在复杂的流体,如聚合物溶液,胶体溶液,生物流体,这是非牛顿流体的例子,表现出不寻常的性质在流动。 这个项目的目标是发展一个基本的知识,电动粒子运动的聚合物溶液通过微通道。本研究将详细阐述流体弹性和剪切稀化效应对电泳运动在通道轴方向上的影响以及颗粒向通道壁的横向迁移,以找到控制颗粒运动的方法。 实验将扩展到尚未考虑的非牛顿流体系统的大电场。 这项研究将密切编织成本科和研究生课程在克莱姆森大学,并将形成活动的基础上开发的高中学生在南卡罗来纳州。本科生和高中生,特别是那些来自代表性不足的群体,将积极参与该项目,通过各种计划,在部门,大学和国家。该项目将是第一个全面的研究电动粒子运动在非牛顿流体通过微通道。本文对聚合物溶液在(1)纯直流电场、(2)外加压力梯度的直流电场、(3)外加压力梯度的直流电场、(4)外加压力梯度的直流电场和(5)外加压力梯度的直流电场作用下,以及(3)在每种情况下具有高达1 MV/m(比典型的电动微流体高一个数量级)的幅度的纯AC电场。将测试五种具有不同流变特性的常见聚合物溶液,并与牛顿流体进行比较。实验将研究流体弹性和剪切稀化,单独和组合,对线性和非线性电泳粒子运动以及伴随的横向粒子迁移的影响。粒子流动性和迁移的实验数据将与理论公式和数值模拟的预测进行比较,如果可用的话。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electro-elastic migration of particles in viscoelastic fluid flows
- DOI:10.1063/5.0167571
- 发表时间:2023-09
- 期刊:
- 影响因子:4.6
- 作者:Di Li;X. Xuan
- 通讯作者:Di Li;X. Xuan
Nonlinear electrophoresis of dielectric particles in Newtonian fluids
- DOI:10.1002/elps.202200213
- 发表时间:2022-12-28
- 期刊:
- 影响因子:2.9
- 作者:Bentor, Joseph;Dort, Heston;Xuan, Xiangchun
- 通讯作者:Xuan, Xiangchun
Effects of Tween 20 addition on electrokinetic transport in a polydimethylsiloxane microchannel
- DOI:10.1002/elps.202400024
- 发表时间:2024-03-21
- 期刊:
- 影响因子:2.9
- 作者:Tabarhoseini,Seyed Mojtaba;Bentor,Joseph;Xuan,Xiangchun
- 通讯作者:Xuan,Xiangchun
Fluid rheological effects on streaming dielectrophoresis in a post‐array microchannel
阵列后微通道中流体流变学对流式介电泳的影响
- DOI:10.1002/elps.202100270
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Bentor, Joseph;Raihan, Mahmud Kamal;McNeely, Colin;Liu, Zhijian;Song, Yongxin;Xuan, Xiangchun
- 通讯作者:Xuan, Xiangchun
Nonlinear electrophoresis of nonspherical particles in a rectangular microchannel
矩形微通道中非球形颗粒的非线性电泳
- DOI:10.1002/elps.202300188
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Bentor, Joseph;Xuan, Xiangchun
- 通讯作者:Xuan, Xiangchun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangchun Xuan其他文献
Particle focusing in microfluidic devices
- DOI:
10.1007/s10404-010-0602-7 - 发表时间:
2010-03-30 - 期刊:
- 影响因子:2.500
- 作者:
Xiangchun Xuan;Junjie Zhu;Christopher Church - 通讯作者:
Christopher Church
Joule heating effects on electroosmotic entry flow
焦耳热对电渗入口流量的影响
- DOI:
10.1002/elps.201600296 - 发表时间:
2017-03 - 期刊:
- 影响因子:2.9
- 作者:
Rama Aravind Prabhakaran;Yilong Zhou;Saurin Patel;Akshay Kale;Yongxin Song;Guoqing Hu;Xiangchun Xuan - 通讯作者:
Xiangchun Xuan
Xiangchun Xuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangchun Xuan', 18)}}的其他基金
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around Dielectric Surfaces
合作研究:浓差极化引起介电表面周围的动电流
- 批准号:
2127825 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
Fundamental Study of Nonlinear Electrokinetic Phenomena in Insulator-based Dielectrophoretic Microdevices
绝缘体介电泳微器件中非线性动电现象的基础研究
- 批准号:
1704379 - 财政年份:2017
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
CAREER: Particle Magnetophoresis in Ferrofluid Microflows for Lab-on-a-Chip Applications
职业:用于芯片实验室应用的铁磁流体微流中的粒子磁泳
- 批准号:
1150670 - 财政年份:2012
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
Particle Electrophoresis in Curved Microchannels: Fundamentals and Applications
弯曲微通道中的粒子电泳:基础知识和应用
- 批准号:
0853873 - 财政年份:2009
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
相似海外基金
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2332802 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
Application of electrokinetics to development of new technologies in environmental engineering field
动电学在环境工程领域新技术开发中的应用
- 批准号:
RGPIN-2017-06661 - 财政年份:2022
- 资助金额:
$ 30.07万 - 项目类别:
Discovery Grants Program - Individual
Application of electrokinetics to development of new technologies in environmental engineering field
动电学在环境工程领域新技术开发中的应用
- 批准号:
RGPIN-2017-06661 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别:
Discovery Grants Program - Individual
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2102363 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
Nonlinear electrokinetics at polarizable soft interfaces: implications for cell membrane characterization and nanopore transport
可极化软界面的非线性电动学:对细胞膜表征和纳米孔传输的影响
- 批准号:
1936065 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
Standard Grant
Application of electrokinetics to development of new technologies in environmental engineering field
动电学在环境工程领域新技术开发中的应用
- 批准号:
RGPIN-2017-06661 - 财政年份:2020
- 资助金额:
$ 30.07万 - 项目类别:
Discovery Grants Program - Individual
Scale-up of a substrate capable of surface enhanced Raman spectroscopy assembled using electrokinetics for early and portable detection of chemical and biological agents
使用动电学组装能够进行表面增强拉曼光谱的基板的放大,用于化学和生物制剂的早期和便携式检测
- 批准号:
503770-2017 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
In Situ Remediation of Salt-affected Soil Using Electrokinetics
利用电动学原位修复受盐影响的土壤
- 批准号:
518271-2017 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Applied Research and Development Grants - Level 2
Application of electrokinetics to development of new technologies in environmental engineering field
动电学在环境工程领域新技术开发中的应用
- 批准号:
RGPIN-2017-06661 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Discovery Grants Program - Individual
Scale-up of a substrate capable of surface enhanced Raman spectroscopy assembled using electrokinetics for early and portable detection of chemical and biological agents**
使用动电学组装能够进行表面增强拉曼光谱的基板的放大,用于化学和生物制剂的早期和便携式检测**
- 批准号:
503770-2017 - 财政年份:2018
- 资助金额:
$ 30.07万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral