Particle Electrophoresis in Curved Microchannels: Fundamentals and Applications

弯曲微通道中的粒子电泳:基础知识和应用

基本信息

  • 批准号:
    0853873
  • 负责人:
  • 金额:
    $ 21.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

0853873XuanThe problem of particle electrophoresis in confined microchannels has practical significance in a variety of applications involving bounded electrokinetic flows, which range from traditional gel electrophoresis to those occurring in microfluidics-based lab-on-a-chip devices. To date, however, studies on particle electrophoresis have been limited to primarily theoretical or numerical analyses in straight microchannels of simple geometries. Very little work has been done on the particle electrophoretic motion in real microchannels which usually consist of one or multiple turns in order to fit them into the small footprint of, for example, a glass slide. Our goals in this proposal are to obtain a fundamental knowledge of particle electrophoresis in curved microchannels, and to explore the applications of microchannel turns as passive control elements of particle transport in microfluidic systems. We will understand and implement the continuous focusing, filtration, and separation of microparticles during their electrophoretic motions through curved microchannels. All these processes stem from the turn-induced dielectrophoretic force that deflects particles across the streamlines of electrokinetic flow.Three research thrusts will be carried out by a PhD student using a combined experimental, numerical, and theoretical method: 1) fundamental study of particle electrophoresis in single microchannel turns; 2) application study of particle focusing in serpentine microchannels; and 3) application study of particle separation in spiral microchannels.Intellectual merit: The proposed fundamental study of particle electrophoresis within turns will fill the blank in the current knowledge of electrophoretic motion in real microchannels. The proposed electrodeless dielectrophoretic focusing of particles in serpentine microchannels eliminates the use of sheath flows and in-channel or on-chip electrical components, and thus substantially simplifies the fabrication and operation and reduces the probability of device fouling. The proposed electrodeless dielectrophoretic separation of particles in spiral microchannels can work in a rapid continuous manner without the need for external force fields or mechanical or electrical parts as the applied electric field generates the concurrent pumping, focusing and separation of particles.Broader impacts: The acquired knowledge of particle electrophoresis within turns will essentially benefit every engineering application of this transport in microfluidic devices. The ability to continuously focus, filtrate and separate particles in curved microchannels as described here will stimulate the exploration and exploitation of inert microstructures (e.g., turns, ridges, and posts, etc.) as passive control elements in larger microfluidic systems. We envision direct near-term applications of the proposed electrodeless dielectrophoretic focusing approach in continuous bioparticle separation, high-throughput flow cytometry, and continuous filtration systems for a wide range of technological solutions in biology, medicine and industry.Education: This proposed research will be intimately integrated into the undergraduate and graduate education at Clemson University and the high school outreach in South Carolina. Undergraduate and high school students will be actively involved in this research through various programs available in the department, university, and state, with an emphasis on the inclusion of women, underrepresented minority groups, and persons with disabilities. The results of this research will be disseminated through journal publications and professional conferences, and will also be posted on a self maintained website for open access to students, researchers and educators around the world.
0853873 Xuan受限微通道中的粒子电泳问题在涉及受限电动流动的各种应用中具有实际意义,这些应用的范围从传统的凝胶电泳到发生在基于微流体的芯片实验室设备中的应用。然而,迄今为止,粒子电泳的研究主要限于简单几何形状的直微通道中的理论或数值分析。关于真实的微通道中的粒子电泳运动的工作很少,所述微通道通常由一个或多个转弯组成,以便将它们装配到例如载玻片的小覆盖区中。 我们的目标是获得弯曲微通道中粒子电泳的基本知识,并探索微通道转弯作为微流体系统中粒子输运的被动控制元件的应用。我们将理解和实现连续聚焦,过滤和分离的微粒在其电泳运动通过弯曲的微通道。所有这些过程都源于转向诱导的介电泳力,该力使粒子偏转穿过电动流的流线。一位博士生将使用实验、数值和理论相结合的方法进行三个研究方向:1)单微通道转弯中的粒子电泳的基础研究; 2)蛇形微通道中粒子聚焦的应用研究;(3)螺旋微通道内颗粒分离的应用研究.学术价值:螺旋微通道内颗粒电泳的基础研究将填补目前真实的微通道内电泳运动研究的空白。所提出的蛇形微通道中的颗粒的无电极介电泳聚焦消除了鞘流和通道内或芯片上电部件的使用,并且因此大大简化了制造和操作,并且降低了器件结垢的可能性。所提出的无电极介电泳分离的螺旋微通道中的颗粒可以工作在一个快速连续的方式,而不需要外力场或机械或电气部件作为所施加的电场产生的并发泵送,聚焦和particle.Broader影响的分离:所获得的知识,在轮流内的粒子电泳将基本上有利于每一个工程应用,这种运输在微流体设备。如本文所述的在弯曲微通道中连续聚焦、过滤和分离颗粒的能力将刺激惰性微结构(例如,转弯、山脊和柱子等)作为更大的微流体系统中的被动控制元件。我们设想直接近期应用的建议无电极介电电泳聚焦方法在连续的生物粒子分离,高通量流式细胞术,和连续过滤系统的广泛的技术解决方案,在生物,医药和industry.Education:这项拟议的研究将密切结合到本科和研究生教育在克莱姆森大学和高中外展在南卡罗来纳州。本科生和高中生将积极参与这项研究,通过在部门,大学和国家提供的各种方案,重点是纳入妇女,代表性不足的少数群体和残疾人。这项研究的结果将通过期刊出版物和专业会议传播,并将张贴在一个自我维护的网站上,供世界各地的学生、研究人员和教育工作者开放访问。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangchun Xuan其他文献

Particle focusing in microfluidic devices
  • DOI:
    10.1007/s10404-010-0602-7
  • 发表时间:
    2010-03-30
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Xiangchun Xuan;Junjie Zhu;Christopher Church
  • 通讯作者:
    Christopher Church
Joule heating effects on electroosmotic entry flow
焦耳热对电渗入口流量的影响
  • DOI:
    10.1002/elps.201600296
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Rama Aravind Prabhakaran;Yilong Zhou;Saurin Patel;Akshay Kale;Yongxin Song;Guoqing Hu;Xiangchun Xuan
  • 通讯作者:
    Xiangchun Xuan

Xiangchun Xuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangchun Xuan', 18)}}的其他基金

Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around Dielectric Surfaces
合作研究:浓差极化引起介电表面周围的动电流
  • 批准号:
    2127825
  • 财政年份:
    2021
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Particle Electrokinetics in Non-Newtonian Microfluidics
非牛顿微流体中的粒子电动学
  • 批准号:
    2100772
  • 财政年份:
    2021
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Fundamental Study of Nonlinear Electrokinetic Phenomena in Insulator-based Dielectrophoretic Microdevices
绝缘体介电泳微器件中非线性动电现象的基础研究
  • 批准号:
    1704379
  • 财政年份:
    2017
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
CAREER: Particle Magnetophoresis in Ferrofluid Microflows for Lab-on-a-Chip Applications
职业:用于芯片实验室应用的铁磁流体微流中的粒子磁泳
  • 批准号:
    1150670
  • 财政年份:
    2012
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
  • 批准号:
    2340925
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
High-resolution mass spectrometer with Liquid Chromatography (LC) and Capillary Electrophoresis (CE)
具有液相色谱 (LC) 和毛细管电泳 (CE) 功能的高分辨率质谱仪
  • 批准号:
    515835726
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Major Research Instrumentation
Automated Electrophoresis Platform to Streamline Validations of Biomedical Samples
自动化电泳平台可简化生物医学样品的验证
  • 批准号:
    10710812
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
Microchip electrophoresis as basis for fully integrated, fully automated, low-cost radiopharmaceutical QC platform
微芯片电泳作为完全集成、全自动、低成本放射性药物 QC 平台的基础
  • 批准号:
    10697506
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
Sodium Dodecyl Sulfate Removal Interface to Enable Characterization of Fragment Impurities in Monoclonal Antibodies by Capillary Electrophoresis Sodium Dodecyl Sulfate Coupled to Mass Spectrometry
十二烷基硫酸钠去除接口可通过十二烷基硫酸钠毛细管电泳与质谱联用对单克隆抗体中的片段杂质进行表征
  • 批准号:
    10759354
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
Planar Capillary Electrophoresis
平面毛细管电泳
  • 批准号:
    2247387
  • 财政年份:
    2023
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
New Advances in Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry for Accelerating Biomarker Discovery in Metabolomics
多段注射-毛细管电泳-质谱法加速代谢组学生物标志物发现的新进展
  • 批准号:
    RGPIN-2020-06630
  • 财政年份:
    2022
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Fundamental Mechanisms of Microfluidic Traveling-Wave Electrophoresis
合作研究:微流控行波电泳的基本机制
  • 批准号:
    2216766
  • 财政年份:
    2022
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
Development of Desorption Techniques for Capillary Electrophoresis Analysis of Environmentally Toxic and Biochemically Active Contaminants on Nanoparticles and Nanomaterials in Water after Preconcentration by Liposome Encapsulation
脂质体封装预浓缩后水中纳米颗粒和纳米材料上环境毒性和生化活性污染物毛细管电泳分析解吸技术的发展
  • 批准号:
    RGPIN-2018-05320
  • 财政年份:
    2022
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Discovery Grants Program - Individual
Online Affinity Micro Free Flow Electrophoresis Assays for Continuous Monitoring of Biochemical Messengers
用于连续监测生化信使的在线亲和微自由流电泳分析
  • 批准号:
    10420769
  • 财政年份:
    2022
  • 资助金额:
    $ 21.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了