CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
基本信息
- 批准号:2332802
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Drs. Huiyuan Zhu and Hongliang Xin of the Virginia Polytechnic Institute and State University are studying new strategies to improve the performance of catalysts that recycle carbon dioxide (CO2) using renewable electricity. Traditional metal electrodes, including precious metals (Au, Ag) and base metals (Cu, Zn), have shown encouraging performance toward CO2 reduction. However, the process is limited by low energy efficiency and poor product selectivity. These processes are conducted in water, and the competing reduction of water to H2 is largely responsible for this inefficiency. This proposal addresses this challenge using ionic liquids as non-aqueous electrolytes together with electrode materials designed to work with ionic liquids. The educational components of the project include the following: (1) The interdisciplinary training of undergraduate and graduate students in electrochemical techniques, materials characterization, and molecular modeling. (2) The involvement of diverse underrepresented groups including female students in science and engineering. (3) The implementation of STEM outreach programs to K-12 students from diverse groups and low-income families through hands-on demonstrations that illustrate the importance of nanomaterials, modeling, catalysis, and energy in our daily life. Undergraduate summer interns from underrepresented minority groups will be recruited to work on this project through a partnership with Hampton University. With the support of the Chemical Catalysis program in the Division of Chemistry, Drs. Huiyuan Zhu and Hongliang Xin of the Virginia Polytechnic Institute and State University are studying a cooperative site and electrolyte tuning strategy for the rational design of electrocatalytic systems to get beyond energy-scaling limitations, specifically for electrochemical CO2 reduction reactions (eCO2RR) on bismuth-based bimetallic nanocatalysts with non-aqueous ionic liquid electrolytes. The known Sabatier principle, arising from the adsorption-energy scaling relations at geometrically similar sites, generally imposes volcano-shaped constraints on the attainable catalytic performance. The Zhu-Xin team hypothesizes that the crucial charge-transfer intermediates toward CO2 reduction can be stabilized by cooperatively tailoring the p-band of active Bi sites via doping and heterocyclic cations of ionic liquids, while the competing hydrogen evolution reaction (HER) is suppressed. Using a combination of precision synthesis, electrocatalysis, advanced characterization techniques, as well as molecular modeling tools, the team seeks to uncover structure-reactivity relationships at the interface of nanoparticles and ionic liquid electrolytes. Success of this proposed research has the potential to advance fundamental understanding of CO2 reduction chemistry and provide guiding principles for catalyst design to address current challenges in eCO2RR. The atomistic insights into physicochemical properties of solid-electrolyte interfaces from this project may provide guidance for the design of other electrocatalytic transformations. Beyond scientific and technical impact, this project will train students at the interface of materials chemistry, quantum-chemical modeling, and catalysis, and prepare them for career pathways in academia and/or industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,弗吉尼亚理工学院和州立大学的Huiyuan Zhu博士和Hongliang Xin博士正在研究新的策略,以提高使用可再生电力回收二氧化碳(CO2)的催化剂的性能。传统的金属电极,包括贵金属(Au,Ag)和贱金属(Cu,Zn),已经显示出令人鼓舞的CO2还原性能。然而,该方法受到低能量效率和差的产物选择性的限制。这些过程在水中进行,并且水竞争性地还原成H2是这种低效率的主要原因。该提议使用离子液体作为非水电解质以及设计成与离子液体一起工作的电极材料来解决这一挑战。该项目的教育内容包括:(1)本科生和研究生在电化学技术,材料表征和分子建模方面的跨学科培训。(2)各种代表性不足的群体,包括理工科女生的参与。(3)STEM推广计划的实施,从不同群体和低收入家庭的K-12学生通过动手演示,说明纳米材料,建模,催化和能源在我们日常生活中的重要性。来自代表性不足的少数群体的本科暑期实习生将通过与汉普顿大学的合作被招募来从事这个项目。 在化学系化学催化项目的支持下,弗吉尼亚理工学院和州立大学的朱慧源博士和辛洪亮博士正在研究一种合作位点和电解质调节策略,用于电催化系统的合理设计,以超越能量缩放限制,特别是用于在铋基纳米催化剂上的电化学CO2还原反应(eCO 2 RR)和非水离子液体电解质。已知的Sabatier原理,产生于吸附能量的缩放关系在几何相似的网站,通常强加火山形的约束条件,可达到的催化性能。Zhu-Xin团队假设,通过离子液体的掺杂和杂环阳离子协同剪裁活性Bi位点的p带,可以稳定CO2还原的关键电荷转移中间体,同时抑制竞争性析氢反应(HER)。使用精密合成,电催化,先进的表征技术以及分子建模工具的组合,该团队试图揭示纳米粒子和离子液体电解质界面的结构-反应性关系。这项拟议研究的成功有可能促进对CO2还原化学的基本理解,并为催化剂设计提供指导原则,以应对当前eCO 2 RR的挑战。本计画对固体电解质界面物理化学性质的原子论观点,可为其他电催化转换的设计提供指导。除了科学和技术的影响,该项目将培养学生在材料化学,量子化学建模和催化的接口,并准备他们在学术界和/或工业的职业道路。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiyuan Zhu其他文献
Validation of 1D model for methane/air/Pt combustion in a stagnation flow
停滞流中甲烷/空气/Pt 燃烧的一维模型验证
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Minghou Liu;Dan Xing;Yuzhou Lu;Huiyuan Zhu - 通讯作者:
Huiyuan Zhu
Feasibility of Sub-milliSievert Low-dose Computed Tomography with Deep Learning Image Reconstruction in Evaluating Pulmonary Subsolid Nodules: A Prospective Intra-individual Comparison Study
深度学习图像重建的亚毫西弗低剂量计算机断层扫描在评估肺部亚实性结节中的可行性:一项前瞻性个体内比较研究
- DOI:
10.1016/j.acra.2024.11.042 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.900
- 作者:
Huiyuan Zhu;Zike Huang;Qunhui Chen;Weiling Ma;Jiahui Yu;Shiqing Wang;Guangyu Tao;Jun Xing;Haixin Jiang;Xiwen Sun;Jing Liu;Hong Yu;Lin Zhu - 通讯作者:
Lin Zhu
Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance
通过气体驱动剥离形成少层石墨烯以增强超级电容性能
- DOI:
10.1016/j.jechem.2017.09.018 - 发表时间:
2017-09 - 期刊:
- 影响因子:13.1
- 作者:
Peiwen Wu;Jing He;Linlin Chen;Yingcheng Wu;Hongping Li;Huiyuan Zhu;Huaming Li;Wenshuai Zhu - 通讯作者:
Wenshuai Zhu
Clinical Research of Exhaled Nitric Oxide Measurements in Patients With Chronic Obstructive Pulmonary Disease
- DOI:
10.1016/j.chest.2016.02.384 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Huiyuan Zhu;Guojun Zhang;Jingshuo Wu;Zhong Zhang;Yahong Lan;Qian Yang;Xiaolin Li;Lina Zhou;Aixin Zhang;Peipei Wu - 通讯作者:
Peipei Wu
Mesoporous Carbon-supported Ultrasmall Metal Nanoparticles via a Mechanochemical-driven Redox Reaction: A “Two-in-One” Strategy
通过机械化学驱动的氧化还原反应制备介孔碳支撑的超小金属纳米粒子:“二合一”策略
- DOI:
10.1016/j.apcatb.2021.120232 - 发表时间:
2021-04 - 期刊:
- 影响因子:22.1
- 作者:
Tian Jin;Xiaofei Liu;Ya-Qiong Su;Fenghongkang Pan;Xue Han;Huiyuan Zhu;Rongqian Wu;Yi Lyu - 通讯作者:
Yi Lyu
Huiyuan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiyuan Zhu', 18)}}的其他基金
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
- 批准号:
2317302 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
- 批准号:
2143710 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2102363 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似海外基金
Site-Specific Functionalization of Peptides by Cooperative Catalysis
通过协同催化对肽进行位点特异性功能化
- 批准号:
2341523 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2102363 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Site-Specific Functionalization of Peptides by Cooperative Catalysis
通过协同催化对肽进行位点特异性功能化
- 批准号:
2102488 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Target site selection and cooperative host cell invasion by Salmonella enterica
肠道沙门氏菌的靶位选择和协同宿主细胞入侵
- 批准号:
551145-2020 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
University Undergraduate Student Research Awards
Cooperative Multicenter Reproductive Medicine Network UNC Clinical Site
合作多中心生殖医学网络北卡罗来纳大学临床站点
- 批准号:
9762757 - 财政年份:2018
- 资助金额:
$ 47.5万 - 项目类别:
Creation of heterobimetallic complexes utilizing hybrid-type NHC ligand for development of cooperative reaction site
利用混合型 NHC 配体创建异双金属配合物以开发协同反应位点
- 批准号:
17K05805 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Cooperative Survey by Multiple AUVs Based on On-site Adaptive Observation Routes
基于现场自适应观测路线的多AUV协同测量实现
- 批准号:
16K18317 - 财政年份:2016
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cooperative Multicenter Reproductive Medicine Network UNC Clinical Site
合作多中心生殖医学网络北卡罗来纳大学临床站点
- 批准号:
8740532 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Cooperative Multicenter Reproductive Medicine Network UNC Clinical Site
合作多中心生殖医学网络北卡罗来纳大学临床站点
- 批准号:
8588615 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Mobile image-based systems for on-site visualizations in the context of cooperative track-planning - trajectory determination of a multi-fisheye camera system in complex construction environments
基于移动图像的系统,用于协作轨道规划背景下的现场可视化 - 复杂施工环境中多鱼眼相机系统的轨迹确定
- 批准号:
190578467 - 财政年份:2011
- 资助金额:
$ 47.5万 - 项目类别:
Research Units