Collaborative Research: An Agent-Based Investigation of Hurricane Evacuation Dynamics: Key Factors, Connections, and Emergent Behaviors

协作研究:基于主体的飓风疏散动力学调查:关键因素、联系和紧急行为

基本信息

  • 批准号:
    2100801
  • 负责人:
  • 金额:
    $ 38.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Hurricane evacuations are a complex process involving interactions among hurricane systems, the built environment, particularly transportation systems, and the evacuation decisions and actions of individuals and households in our coastal communities. Previous research suggests that evacuation processes vary depending up on the nature of hurricanes in terms of their intensity, direction, and speed, but the research community has been lacking in approaches to link these complex systems together within a single modeling framework. This project will model the interactions among these different systems to better capture and understand the problems and issues associated with evacuations under different kinds of hurricane storms scenarios within a single framework. The resulting framework will greatly facilitate the scientific understanding of these processes helping reduce potential loss of life that often accompany hurricanes and help state and local agencies better plan for hurricane evacuation. The broader societal beneficiaries of this work include coastal communities, government agencies, and businesses. Hurricane evacuations are a complex process involving many intersecting physical-social factors and uncertainties which evolve over time. The ultimate goal of the research is to examine the complex dynamics of the integrated hurricane evacuation system, and subsequently, to help mitigate the loss of life that often accompanies tropical systems. To that end, models are constructed representing three interwoven elements relevant to the hurricane evacuation system: the natural hazard (hurricane, forecasts, warning information), the human system (information flow, evacuation-related decisions), and the built environment (transportation infrastructure and evacuation routing). By integrating these models into a unified, agent-based framework, the project will create a virtual laboratory where model pieces can be perturbed in different ways to see how components interact and influence evacuation processes under different hurricane scenarios. The model system generated will advance the scientific community’s ability to model and understand the complexities of the integrated hurricane evacuation system dynamics and outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
飓风疏散是一个复杂的过程,涉及飓风系统,建筑环境,特别是交通系统,以及沿海社区个人和家庭的疏散决定和行动之间的相互作用。以前的研究表明,疏散过程取决于飓风的强度,方向和速度的性质,但研究界一直缺乏在一个单一的建模框架内将这些复杂的系统联系在一起的方法。该项目将模拟这些不同系统之间的相互作用,以更好地捕捉和理解在单一框架内不同类型的飓风风暴情景下与疏散相关的问题和问题。由此产生的框架将极大地促进对这些过程的科学理解,帮助减少经常伴随飓风的潜在生命损失,并帮助州和地方机构更好地规划飓风疏散。这项工作的更广泛的社会受益者包括沿海社区,政府机构和企业。飓风疏散是一个复杂的过程,涉及许多相互交叉的物理-社会因素和不确定性,这些因素会随着时间的推移而演变。研究的最终目标是研究综合飓风疏散系统的复杂动态,并随后帮助减轻热带系统经常伴随的生命损失。为此,构建了与飓风疏散系统相关的三个交织要素的模型:自然灾害(飓风,预报,警报信息),人类系统(信息流,疏散相关决策)和建筑环境(交通基础设施和疏散路线)。通过将这些模型集成到一个统一的、基于代理的框架中,该项目将创建一个虚拟实验室,在这个实验室中,模型部件可以以不同的方式被扰动,以观察组件如何在不同的飓风场景下相互作用并影响疏散过程。所产生的模型系统将提高科学界的建模能力,并了解综合飓风疏散系统动态和结果的复杂性。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An agent-based modeling framework for examining the dynamics of the hurricane-forecast-evacuation system
用于检查飓风预报疏散系统动态的基于代理的建模框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Roebber其他文献

Minding the Weather: How Expert Forecasters Think
关注天气:专家预报员的想法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Hoffman;Daphne S. LaDue;H. Mogil;Paul Roebber;J. Trafton
  • 通讯作者:
    J. Trafton
Role of Nonlinear Dynamics in Accelerated Warming of Great Lakes
非线性动力学在五大湖加速变暖中的作用
  • DOI:
    10.1007/978-3-319-58895-7_15
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    S. Kravtsov;N. Sugiyama;Paul Roebber
  • 通讯作者:
    Paul Roebber
Modeling wind‐driven circulation during the March 1998 sediment resuspension event in Lake Michigan
对 1998 年 3 月密歇根湖沉积物再悬浮事件期间的风驱动环流进行建模
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Beletsky;D. Schwab;Paul Roebber;M. Mccormick;G. S. Miller;J. Saylor
  • 通讯作者:
    J. Saylor
Synoptic Control of Mesoscale Precipitating Systems in the Pacific Northwest
西北太平洋中尺度降水系统的天气控制
  • DOI:
    10.1175/2008mwr2264.1
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Paul Roebber;K. Swanson;J. Ghorai
  • 通讯作者:
    J. Ghorai
Adaptive Evolutionary Programming
自适应进化规划
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Roebber
  • 通讯作者:
    Paul Roebber

Paul Roebber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Roebber', 18)}}的其他基金

Reducing Forecast Uncertainty to Improve Understanding of Atmospheric Flow Transitions
降低预测不确定性以提高对大气流动转变的理解
  • 批准号:
    0552215
  • 财政年份:
    2006
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Continuing Grant
Synoptic Control of Mesoscale Precipitating Systems in the Pacific Northwest
西北太平洋中尺度降水系统的天气控制
  • 批准号:
    0106584
  • 财政年份:
    2001
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Continuing Grant
The Impact of Episodic Events on Nearshore-Offshore Transport in the Great Lakes (Meterological Modeling Program)
偶发事件对五大湖近岸-近海运输的影响(气象模拟计划)
  • 批准号:
    9726679
  • 财政年份:
    1997
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316654
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316653
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312093
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了