Cross-Scale Spatiotemporal Modeling Using an Integrated Data Framework
使用集成数据框架的跨尺度时空建模
基本信息
- 批准号:2102019
- 负责人:
- 金额:$ 28.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will address the challenges associated with managing scales in space and time within a single, unified analytic framework. The choice of scale is an important question in the analysis of geospatial data. For example, the spatial analysis of socioeconomic variables at the state level may mask local processes taking place at the county or community level. Historically, spatial and temporal analysis has proceeded either separately or in a loosely coupled research design. This project will develop and extend a multi-scale framework for the visualization and analysis of geospatial data. The framework will resolve fundamental issues of scale handling in data analytics, advance knowledge about cross-scale spatio-temporal phenomena, and aid scientists in looking more deeply into the interplay among various environmental and social processes. New tools will be developed and made publicly available. The utility of these tools will be tested in case studies, including an analysis of wetland habitats in coastal Louisiana and Hawaiian rainfall patterns. The project will support graduate students whose participation will advance their own professional development. The collaboration between the University of Hawaii and the University of Colorado at Boulder will increase geographic diversity and the presence of women and underrepresented minorities in computer science, earth science, and spatial data science.This research project will develop a theoretical framework for multi-scale data representation, modeling, and analysis. Multi-scale analysis of spatio-temporal data is a longstanding concern for analytic systems in many disciplines. The problem of handling scale is epitomized in the well-known modifiable areal unit problem and its temporal equivalent. These issues are partially due to the traditionally held views of time as a linear sequence and space as a flat layer. This project extends research on the Triangular Model (TM), a 2D representation of time, into higher dimensional models. The project will test the utility of TM in analyzing linear spatial data, refine conceptual and computational aspects of a 3D Pyramid Model (PM) for multi-scale spatial analysis, and integrate the TM and PM into an 5D analytical framework for multi-scale spatio-temporal analyses. Topologies, statistics, and machine learning methods will be developed on the models and framework to support multi-scale queries, visualization, and quantitative modeling. The questions to be answered in the project include: 1) what additional knowledge can be gained by analyzing spatio-temporal variations, patterns, and relationships of phenomena across in the TM and PM frameworks? and 2) in what ways can multi-scale representations of spatio-temporal data facilitate the modeling of human-environment interactions?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将解决与在一个统一的分析框架内管理空间和时间尺度相关的挑战。比例尺的选择是地理空间数据分析中的一个重要问题。例如,在州一级对社会经济变量进行的空间分析可能掩盖了在县或社区一级发生的地方进程。从历史上看,空间和时间的分析进行了单独或松散耦合的研究设计。该项目将开发和扩展一个多尺度框架,用于地理空间数据的可视化和分析。该框架将解决数据分析中尺度处理的基本问题,推进对跨尺度时空现象的了解,并帮助科学家更深入地研究各种环境和社会过程之间的相互作用。将开发新的工具并向公众提供。这些工具的效用将在案例研究中进行测试,包括对路易斯安那州沿海湿地生境和夏威夷降雨模式的分析。该项目将支持研究生,他们的参与将促进他们自己的专业发展。夏威夷大学和位于博尔德的科罗拉多大学之间的合作将增加地理多样性以及妇女和代表性不足的少数民族在计算机科学,地球科学和空间数据science.This研究项目将开发多尺度数据表示,建模和分析的理论框架。时空数据的多尺度分析是许多学科分析系统长期关注的问题。处理规模的问题集中体现在著名的可修改的面积单位问题及其时间等效。这些问题部分是由于传统上认为时间是线性序列,空间是平面层。该项目将三角模型(TM)(时间的二维表示)的研究扩展到更高维的模型。该项目将测试TM在分析线性空间数据方面的实用性,改进用于多尺度空间分析的3D金字塔模型(PM)的概念和计算方面,并将TM和PM集成到用于多尺度时空分析的5D分析框架中。拓扑,统计和机器学习方法将在模型和框架上开发,以支持多尺度查询,可视化和定量建模。本计画所要回答的问题包括:1)在TM与PM架构中,透过分析现象的时空变异、模式与关系,可以获得哪些额外的知识?以及2)时空数据的多尺度表示在哪些方面可以促进人与环境交互的建模?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial Assessment of Community Resilience from 2012 Hurricane Sandy Using Nighttime Light
- DOI:10.3390/rs13204128
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Jinwen Xu;Y. Qiang
- 通讯作者:Jinwen Xu;Y. Qiang
Power outage and environmental justice in Winter Storm Uri: an analytical workflow based on nighttime light remote sensing
冬季风暴乌里的停电与环境正义:基于夜间灯光遥感的分析工作流程
- DOI:10.1080/17538947.2023.2224087
- 发表时间:2023
- 期刊:
- 影响因子:5.1
- 作者:Xu, Jinwen;Qiang, Yi;Cai, Heng;Zou, Lei
- 通讯作者:Zou, Lei
Analyzing multi-scale spatial point patterns in a pyramid modeling framework
在金字塔建模框架中分析多尺度空间点模式
- DOI:10.1080/15230406.2022.2048419
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Qiang, Yi;Buttenfield, Barbara;Xu, Jinwen
- 通讯作者:Xu, Jinwen
Analysing Information Diffusion in Natural Hazards using Retweets - a Case Study of 2018 Winter Storm Diego
使用转发分析自然灾害中的信息扩散 - 以 2018 年冬季风暴迭戈为例
- DOI:10.1080/19475683.2021.1954086
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Xu, Jinwen;Qiang, Yi
- 通讯作者:Qiang, Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Qiang其他文献
A detailed experimental study of the validity and applicability of slotted stand-off layer rail dampers in reducing railway vibration and noise
开槽隔离层轨道阻尼器降低铁路振动和噪声的有效性和适用性的详细实验研究
- DOI:
10.1177/1461348418765964 - 发表时间:
2018-03 - 期刊:
- 影响因子:2.3
- 作者:
Zhao Caiyou;Wang Ping;Yi Qiang;Sheng Xi;Lu Lun - 通讯作者:
Lu Lun
Generation mechanism of high-order waves in wide titanium strip under the control of the first intermediate taper roll of a 20-high mill
- DOI:
10.1007/s00170-024-13326-z - 发表时间:
2024-03-01 - 期刊:
- 影响因子:3.100
- 作者:
Guanyu Zhou;Anrui He;Lantian Guo;Chao Liu;Cong Han;Yi Qiang - 通讯作者:
Yi Qiang
Integrated transcriptomic and metabolomic profiles reveal anthocyanin accumulation in emScutellaria baicalensis/em petal coloration
综合转录组学和代谢组学分析揭示了黄芩花瓣颜色中花色苷的积累
- DOI:
10.1016/j.indcrop.2022.116144 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:6.200
- 作者:
Suying Hu;Wentao Wang;Caijuan Zhang;Wen Zhou;Pengdong Yan;Xiaoshan Xue;Qian Tian;Donghao Wang;Junfeng Niu;Shiqiang Wang;Yi Qiang;Chengke Bai;Langjun Cui;Xiaoyan Cao;Zhezhi Wang - 通讯作者:
Zhezhi Wang
Physics-informed semi-supervised learning for hot-rolled strip flatness pattern recognition based on FixMatch method
基于 FixMatch 方法的热轧带钢板形模式识别的物理信息半监督学习
- DOI:
10.1016/j.eswa.2025.128885 - 发表时间:
2026-01-15 - 期刊:
- 影响因子:7.500
- 作者:
Fenjia Wang;Anrui He;Chao Liu;Wendan Xiao;Yong Song;Changke Chen;Yi Qiang - 通讯作者:
Yi Qiang
Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms
工程元势垒作为纵波屏蔽:带隙特性和优化机制
- DOI:
10.1631/jzus.a1700192 - 发表时间:
2018-05 - 期刊:
- 影响因子:0
- 作者:
Sheng Xi;Zhao Cai-you;Yi Qiang;Wang Ping;Xing Meng-ting - 通讯作者:
Xing Meng-ting
Yi Qiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Qiang', 18)}}的其他基金
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
- 批准号:
2318204 - 财政年份:2023
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
2052063 - 财政年份:2020
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940230 - 财政年份:2020
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
Cross-Scale Spatiotemporal Modeling Using an Integrated Data Framework
使用集成数据框架的跨尺度时空建模
- 批准号:
1853866 - 财政年份:2019
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
$ 28.69万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spatiotemporal scale of large-scale hydrothermal circulation system connecting ocean and mantle at the outer rise
外隆连接海洋与地幔的大尺度热液循环系统的时空尺度
- 批准号:
22H00167 - 财政年份:2022
- 资助金额:
$ 28.69万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Closed-Loop Systems for Large Scale Spatiotemporal Imaging and Actuation of Neural Activity in Freely Behaving Animals
用于自由行为动物的大规模时空成像和神经活动激活的闭环系统
- 批准号:
10401560 - 财政年份:2022
- 资助金额:
$ 28.69万 - 项目类别:
Closed-Loop Systems for Large Scale Spatiotemporal Imaging and Actuation of Neural Activity in Freely Behaving Animals
用于自由行为动物的大规模时空成像和神经活动激活的闭环系统
- 批准号:
10675440 - 财政年份:2022
- 资助金额:
$ 28.69万 - 项目类别:
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
- 批准号:
2146343 - 财政年份:2022
- 资助金额:
$ 28.69万 - 项目类别:
Continuing Grant
Collaborative Research: Detection and Estimation of Multi-Scale Complex Spatiotemporal Processes in Tornadic Supercells from High Resolution Simulations and Multiparameter Radar
合作研究:通过高分辨率模拟和多参数雷达检测和估计龙卷超级单体中的多尺度复杂时空过程
- 批准号:
2114860 - 财政年份:2021
- 资助金额:
$ 28.69万 - 项目类别:
Standard Grant