Phase Space Geometry of Critical Transitions in Collective Behavior Modeled by Mean Field Type Control Problems
平均场类型控制问题建模的集体行为关键转变的相空间几何
基本信息
- 批准号:2102112
- 负责人:
- 金额:$ 31.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research on understanding and manipulating the collective behavior of engineered large-population multi-agent systems, promoting both the progress of science and advancing national prosperity. Examples of such systems include mobile robot swarms, smart grid, metamaterial structures, and vehicular traffic. A key challenge is to impart systems such as robot swarms with the capability to autonomously switch between different collective behaviors, e.g., in response to external stimuli. In other systems such as mixed autonomous-manual traffic, it is desirable to nudge or incentivize the agents toward more desirable collective state(s), e.g., to reduce congestion. Qualitative changes in spatiotemporal collective behavior of a system are studied under the umbrella of phase transitions in physics. This research will extend such methods to controlled large-population multi-agent systems, and create a unifying framework for understanding and triggering phase transitions in such systems. This research aims to understand bifurcations and global phase space structure of non-standard dynamical systems originating in the mean field games and mean field control framework. The mean field control theory for large-population multi-agent systems combines ideas from statistical physics with optimal control, and models scenarios where a large number of interacting agents are acting optimally, either in cooperative or non-cooperative setting. The resulting dynamical systems consist of fully-coupled forward-backward in time nonlinear partial differential equations, and their complexity has to date prevented qualitative understanding of the nature of solutions. Phase transitions in the controlled collective behavior are the result of bifurcations of the solutions of closed-loop mean field control problems as problem parameters, such as cost functions, penalties, and supervisory control action, etc., are varied. This research will adapt local bifurcation theory of existing descriptive (forward) models such as the nonlinear Schrodinger equations and flocking to characterize bifurcations in prescriptive or closed-loop (forward-backward) models of mean field games and mean field control theory. The research will also produce low-order models of these infinite dimensional systems. The phase space geometry of such models will enable discovery of global bifurcations and connecting orbits responsible for switching between different collective behaviors. The use of phase space geometry to understand and induce criticality is a stepping stone towards a ‘theory of thermodynamics’ of large-scale controlled dynamical systems. The insight gained from this project can prove useful in rational design of control penalties and/or incentives to shape the collective behavior of nonlinear agents for diverse applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该基金将支持理解和操纵工程大人口多智能体系统的集体行为的研究,促进科学进步和国家繁荣。这种系统的例子包括移动的机器人群、智能电网、超材料结构和车辆交通。一个关键的挑战是赋予诸如机器人群的系统在不同的集体行为之间自主切换的能力,例如,对外界刺激的反应。在其他系统中,例如混合的人工-手动业务,期望将代理推向或激励代理朝向更期望的集体状态,例如,以减少拥塞。在物理学相变的保护伞下研究系统时空集体行为的质变。这项研究将这些方法扩展到受控的大人口多智能体系统,并创建一个统一的框架,用于理解和触发此类系统中的相变。本研究旨在了解起源于平均场博弈和平均场控制框架的非标准动力系统的分岔和全局相空间结构。大种群多智能体系统的平均场控制理论结合了统计物理学和最优控制的思想,并对大量相互作用的智能体在合作或非合作环境中的最优行为进行了建模。由此产生的动力系统包括完全耦合的向前向后的时间非线性偏微分方程,其复杂性迄今为止,阻止定性了解的性质的解决方案。受控集体行为中的相变是作为问题参数的闭环平均场控制问题的解的分叉的结果,例如成本函数、惩罚和监督控制动作等,是多种多样的本研究将调整现有的描述性(前向)模型,如非线性薛定谔方程和群集的局部分叉理论,以表征平均场博弈和平均场控制理论的规定性或闭环(前向-后向)模型的分叉。这项研究还将产生这些无限维系统的低阶模型。这种模型的相空间几何形状将使全球分叉和连接轨道负责不同的集体行为之间切换的发现。 使用相空间几何来理解和诱导临界性是迈向大规模受控动力系统的“热力学理论”的垫脚石。从这个项目中获得的洞察力可以证明是有用的,在合理设计的控制处罚和/或激励,以塑造集体行为的非线性代理人的多样化application.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piyush Grover其他文献
Treatment sequence with tebentafusp and immune checkpoint inhibitors in patients with metastatic uveal melanoma and metastatic <em>GNA11</em>/<em>GNAQ</em> mutant melanocytic tumors
- DOI:
10.1016/j.ejca.2024.115161 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Florentia Dimitriou;Marlana M. Orloff;Erica C. Koch Hein;Phil F. Cheng;Isaac F. Hughes;Ester Simeone;Kamaneh Montazeri;Piyush Grover;Inderjit Mehmi;Camille L. Gerard;Caroline Gaudy-Marqueste;Jean-Jacques Grob;Olivier Michielin;Omid Hamid;Georgina V. Long;Ryan Sullivan;Ellen Kapiteijn;Douglas B. Johnson;Paolo A. Ascierto;Anthony M. Joshua - 通讯作者:
Anthony M. Joshua
Piyush Grover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 31.15万 - 项目类别:
Continuing Grant
Testing generalized space-time geometry with multimessenger observations of gravitation al waves
用引力波的多信使观测测试广义时空几何
- 批准号:
22KF0085 - 财政年份:2023
- 资助金额:
$ 31.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 31.15万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 31.15万 - 项目类别:
Discovery Early Career Researcher Award
The Geometry of Curves in Projective Space via Degeneration and Deformation
通过退化和变形研究射影空间中的曲线几何
- 批准号:
2200641 - 财政年份:2022
- 资助金额:
$ 31.15万 - 项目类别:
Standard Grant
Symplectic Geometry of Teichmüller Space
Teichmäller 空间的辛几何
- 批准号:
568923-2022 - 财政年份:2022
- 资助金额:
$ 31.15万 - 项目类别:
Postgraduate Scholarships - Doctoral
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
- 批准号:
RGPIN-2018-06486 - 财政年份:2022
- 资助金额:
$ 31.15万 - 项目类别:
Discovery Grants Program - Individual
Space-Time Structure Reconstruction in Cosmology and Lorentzian Geometry
宇宙学和洛伦兹几何中的时空结构重建
- 批准号:
2205266 - 财政年份:2022
- 资助金额:
$ 31.15万 - 项目类别:
Standard Grant
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
- 批准号:
RGPIN-2018-06486 - 财政年份:2021
- 资助金额:
$ 31.15万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Geometry, Physics and Semantics from Motion: Learning Expressive and Space-Aware Video Representations
职业:运动中的几何、物理和语义:学习富有表现力和空间感知的视频表示
- 批准号:
1942736 - 财政年份:2020
- 资助金额:
$ 31.15万 - 项目类别:
Continuing Grant