UNS: Microstructural determinants of ion transport in ion exchange fuel cell membranes
UNS:离子交换燃料电池膜中离子传输的微观结构决定因素
基本信息
- 批准号:1511373
- 负责人:
- 金额:$ 37.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1511373 - Frank, Curtis; Spakowitz, Andrew; Toney, MichaelIon exchange membrane (IEM) fuel cells constitute an enticing alternative energy source whose operation generates water rather than more harmful carbon-based emissions. Efficient operation of a fuel cell hinges on developing a polymer membrane that permits ions to move quickly between the electrodes in the fuel cell. This is typically accomplished using a copolymer with hydrophobic and hydrophilic monomers that phase separate at nanometer length scales. The resulting hydrophobic matrix confers mechanical stability to the membrane, while the hydrophilic domains provide pathways for ions to move between electrodes. Ion transport through the polymer membrane is dictated by the organization of the phase-segregated domains at length scales ranging from nanometers to microns. The rational design of an IEM requires a clear connection between the chemical arrangement of monomers within the copolymers and the resulting molecular-level organization of the ion-transport domains. Such materials are crucial to our future energy utilization, and establishing the structure-function relationship in polymer membranes is crucial to improving fuel-cell performance.This research program combines theoretical modeling, synthesis, and characterization of ion exchange membranes (IEM). The PIs will use a combination of analytical theory and computational modeling to predict the morphology of polymer membranes composed of poly(ethylene oxide)-polyimide (PEO-PI) copolymer materials synthesized in the collaboration, and test and validate the model to provide theoretical guidance for optimizing the performance of IEM materials. The theoretical model, which leverages and extends the existing approaches to modeling random copolymers, will be capable of predicting microphase segregation in other polymer membrane systems. Therefore, establishing this capability of theoretical investigation and experimental testing enables the prediction of microphase organization and material performance in a broad range of polymer membrane materials for fuel cell and other applications.The outreach efforts include the establishment of the LABScI program, which develops and implements teaching modules for the education of high school students that are being treated for childhood cancer. This program has made a major impact on the education of high school students at the Hospital School at the Lucile Packard Children's Hospital. Future outreach efforts aim to further expand our program nationwide as a general laboratory science curriculum for hospital-school education. The PIs will continue to pair with high-school teachers and students during the summers to receive feedback on the ease of implementation, consistency with high-school science standards, and student understanding of the teaching modules.
1511373 -弗兰克,柯蒂斯;Spakowitz,安德鲁;离子交换膜(IEM)燃料电池是一种诱人的替代能源,其运行产生的是水,而不是更有害的碳基排放。燃料电池的有效运行取决于开发一种聚合物膜,这种膜允许离子在燃料电池的电极之间快速移动。这通常是通过在纳米尺度上相分离的疏水和亲水单体的共聚物来完成的。由此产生的疏水基质赋予膜的机械稳定性,而亲水结构域为离子在电极之间移动提供了途径。离子通过聚合物膜的传输是由相分离域的组织决定的,其长度范围从纳米到微米。合理设计IEM需要共聚物内单体的化学排列与离子传输域的分子水平组织之间有明确的联系。这些材料对我们未来的能源利用至关重要,而建立聚合物膜的结构-功能关系对提高燃料电池的性能至关重要。本研究项目结合了离子交换膜(IEM)的理论建模、合成和表征。pi将采用分析理论与计算建模相结合的方法,预测合作合成的聚(环氧乙烷)-聚酰亚胺(PEO-PI)共聚物材料组成的聚合物膜的形态,并对模型进行测试和验证,为优化IEM材料的性能提供理论指导。该理论模型利用并扩展了现有的随机共聚物建模方法,将能够预测其他聚合物膜系统中的微相分离。因此,建立这种理论研究和实验测试的能力,可以预测用于燃料电池和其他应用的广泛的聚合物膜材料的微相组织和材料性能。拓展工作包括建立LABScI项目,该项目为正在接受儿童癌症治疗的高中生开发和实施教学模块。这个项目对露西尔·帕卡德儿童医院医院学校的高中生的教育产生了重大影响。未来的推广工作旨在进一步将我们的计划扩展到全国,作为医院学校教育的一般实验室科学课程。在暑假期间,pi将继续与高中教师和学生配对,以获得关于实施难易程度、与高中科学标准的一致性以及学生对教学模块的理解的反馈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Spakowitz其他文献
Long-Range Structural Changes in the Meiotic Nucleus Revealed by Changes in Stress Communication Along the Chromosome
- DOI:
10.1016/j.bpj.2017.11.212 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Trent Newman;Bruno G. Beltran;James McGehee;Cori Cahoon;Daniel Elnatan;Daniel Chu;Sean Burgess;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
A Polymer Physics Model for Epigenetic Control of Chromatin Compaction
- DOI:
10.1016/j.bpj.2017.11.3080 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Quinn MacPherson;Sarah Sandholtz;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
Physical Modeling of the Spreading and Maintenance of Epigenetic Modifications through DNA Looping and Condensation
- DOI:
10.1016/j.bpj.2017.11.3191 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Sarah Sandholtz;Quinn MacPherson;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
Andrew Spakowitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Spakowitz', 18)}}的其他基金
Theoretical and Computational Modeling of Supercoiling, Topology, and Active Fluctuations in Chromosomal Organization and Dynamics
染色体组织和动力学中超螺旋、拓扑和主动波动的理论和计算模型
- 批准号:
2102726 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
Polymer Physics Across Scales: Bridging Atomistic and Coarse-Grained Polymer Models
跨尺度的聚合物物理:桥接原子和粗粒聚合物模型
- 批准号:
1855334 - 财政年份:2019
- 资助金额:
$ 37.04万 - 项目类别:
Continuing Grant
Theoretical Modeling of Protein-Driven Chromosomal Dynamics and Biological Function
蛋白质驱动的染色体动力学和生物功能的理论模型
- 批准号:
1707751 - 财政年份:2017
- 资助金额:
$ 37.04万 - 项目类别:
Continuing Grant
Revealing the Physical Principles Underlying Epigenetic Regulation Using Theory, Simulation, and Experiment
利用理论、模拟和实验揭示表观遗传调控的物理原理
- 批准号:
1305516 - 财政年份:2013
- 资助金额:
$ 37.04万 - 项目类别:
Continuing Grant
CAREER: Target-Site Search of DNA-Binding Proteins
职业:DNA 结合蛋白的靶位点搜索
- 批准号:
0847050 - 财政年份:2009
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
Formulating microstructural equivalence: A route to consistent scale-up of medicine manufacture
制定微观结构等效性:药物生产持续扩大规模的途径
- 批准号:
EP/Z532988/1 - 财政年份:2024
- 资助金额:
$ 37.04万 - 项目类别:
Research Grant
CAREER: Cyberinfrastructure for Printable Multifunctional Microstructural Materials
职业:可打印多功能微结构材料的网络基础设施
- 批准号:
2339764 - 财政年份:2024
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
- 批准号:
22KJ1400 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Microstructural Engineering of Solid Composite Electrolytes through Process Manipulation
职业:通过工艺操纵进行固体复合电解质的微观结构工程
- 批准号:
2237878 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Standard Grant
Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
- 批准号:
2317263 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Continuing Grant
Microstructural imaging of the tumour microenvironment: towards virtual biopsy of prostate cancer
肿瘤微环境的微观结构成像:前列腺癌的虚拟活检
- 批准号:
2902117 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Studentship
Magnetic resonance based quantitative assessment of myocardial microvascular and microstructural function using STEAM-tIVIM
使用 STEAM-tIVIM 基于磁共振的心肌微血管和微结构功能定量评估
- 批准号:
EP/X014010/1 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Research Grant
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
- 批准号:
10629123 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别: