CDS&E: Multi-scale Coherent Structure Extraction and Tracking For Modern CFD Data Analysis

CDS

基本信息

  • 批准号:
    2102761
  • 负责人:
  • 金额:
    $ 52.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Coherent structures are persistent and recognizable patterns that can be found in fluid flows. In turbulent flows, coherent structures are closely related to a diverse range of physical phenomena, and understanding their behavior is crucial for characterizing, predicting and controlling these flows. However, reliable identification and characterization of coherent structures is challenging due to their diversity and complex inter-relations across different space- and time-scales. This project brings together experts from both the data visualization and fluid mechanics communities to investigate novel solutions to multi-scale coherent structure extraction, separation, tracking, and visualization. It aims at significantly advancing the ability to analyze large datasets of turbulent flows stemming from computational fluid dynamic (CFD) simulations in a wide range of engineering and scientific applications. This project provides opportunities for both undergraduate and graduate students with different and diverse backgrounds to participate in the proposed research. The research outcomes can be integrated into the development of a number of undergraduate and graduate courses taught at the University of Houston. The outreach activities enabled by the proposed research help motivate more students to pursue a career in STEM related fields. To achieve an efficient and reliable analysis for large-scale turbulent flow data, this project aims to investigate a new multi-scale coherent structure representation that encodes relevant flow physics, statistics, and uncertainty information, and to develop a robust computation and exploration framework based on this new representation to support data-driven research. To enable this multi-scale analysis, this project applies a number of spatial and temporal domain decomposition strategies to the computational fluid dynamic (CFD) data. Multi-field analysis and high-dimensional data projection techniques are adapted to incorporate different physical attributes to the representation. A novel graph representation is leveraged to encode this multifaceted information in a concise and dimension-independent form to enable multi-scale feature extraction and tracking. A matrix representation of this graph is employed to accelerate its processing by utilizing the recent advances in large-scale matrix calculation. A new visual analytic paradigm is devised based on the proposed graph representation to aid the exploration and comprehension of different turbulence structures individually or collectively. The developed techniques implemented as a number of software libraries can be integrated into existing software, e.g., Paraview, for domain scientists to use in their daily research. The developed techniques can also be used as pre-processing toolboxes to quantify and extract coherent structures, which can then be visualized by existing software that are not suitable for direct library integration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
相干结构是可以在流体流动中发现的持久且可识别的模式。在湍流中,相干结构与各种物理现象密切相关,了解它们的行为对于表征,预测和控制这些流动至关重要。然而,可靠的识别和表征相干结构是具有挑战性的,由于其多样性和复杂的相互关系,在不同的空间和时间尺度。该项目汇集了来自数据可视化和流体力学社区的专家,研究多尺度相干结构提取,分离,跟踪和可视化的新解决方案。它的目的是显着提高分析大型湍流数据集的能力,这些数据集来自广泛的工程和科学应用中的计算流体动力学(CFD)模拟。该项目为具有不同背景的本科生和研究生提供了参与拟议研究的机会。研究成果可以整合到休斯顿大学教授的一些本科和研究生课程的开发中。拟议研究所开展的外展活动有助于激励更多学生在STEM相关领域从事职业。 为了实现对大规模湍流数据的有效和可靠的分析,该项目旨在研究一种新的多尺度相干结构表示,该表示编码相关的流动物理,统计和不确定性信息,并基于这种新表示开发一个强大的计算和探索框架,以支持数据驱动的研究。为了实现这种多尺度分析,该项目将一些空间和时间域分解策略应用于计算流体动力学(CFD)数据。多场分析和高维数据投影技术适用于将不同的物理属性的表示。一种新的图形表示被利用来以简洁和维度无关的形式对这种多方面的信息进行编码,以实现多尺度特征提取和跟踪。利用大规模矩阵计算的最新进展,该图的矩阵表示,以加速其处理。一个新的视觉分析范式的基础上提出的图形表示,以帮助探索和理解不同的湍流结构单独或集体。实现为多个软件库的所开发的技术可以被集成到现有软件中,例如,Paraview,供领域科学家在日常研究中使用。所开发的技术也可以用作预处理工具箱来量化和提取相干结构,然后可以通过不适合直接库集成的现有软件进行可视化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Mode Decomposition for Large-Scale Coherent Structure Extraction in Shear Flows
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoning Chen其他文献

An Embedded Polygon Strategy for Quality Improvement of 2D Quadrilateral Meshes with Boundaries
用于提高带边界的二维四边形网格质量的嵌入式多边形策略
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Naeem Akram;Lei Si;Guoning Chen
  • 通讯作者:
    Guoning Chen
A strategy for inhibitors screening of xanthine oxidase based on colorimetric sensor combined with affinity chromatography technology.
基于比色传感器结合亲和层析技术的黄嘌呤氧化酶抑制剂筛选策略
  • DOI:
    10.1016/j.bios.2024.116510
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Guoning Chen;Shuxian Zhang;Xiaofei Wang;Xiaoxuan Fan;Gidion Wilson;Yuping Sa;Xueqin Ma
  • 通讯作者:
    Xueqin Ma
2,4,6‐Trichlorophenol degradation mechanism and microbial community analysis in an intimately coupled visible‐light photocatalysis and biodegradation system
  • DOI:
    10.1002/jctb.7127
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Yinna Liang;Tianyu Zhao;Bing Xiao;Jianhua Xiong;Shuangfei Wang;Hongxiang Zhu;Guoning Chen;Hainong Song;Shaobin Huang
  • 通讯作者:
    Shaobin Huang
Herbal allies in antibiotic warfare: Unveiling potent β-lactamase inhibitors with innovative cellulose-based colorimetric sensors
抗生素战争中的草药盟友:用创新的基于纤维素的比色传感器揭示有效的β-内酰胺酶抑制剂
  • DOI:
    10.1016/j.cej.2025.160433
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Yue Zhang;Weibiao Wang;Mei Wang;Lijuan Ma;Weiman Zhang;Shuxian Zhang;Gidion Wilson;Zhigang Yang;Yuping Sa;Fen Ma;Xinmin He;Tao Gao;Hui Yuan;Guoning Chen;Xueqin Ma
  • 通讯作者:
    Xueqin Ma
Immobilization of β-galactosidase within sponge: Hydrolysis of lactose in milk
β-半乳糖苷酶在海绵中的固定化:牛奶中乳糖的水解
  • DOI:
    10.1016/j.lwt.2024.117294
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Shuxian Zhang;Xiaofei Wang;Xiaoxuan Fan;Keshuai Liu;Gidion Wilson;Xueqin Ma;Guoning Chen
  • 通讯作者:
    Guoning Chen

Guoning Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guoning Chen', 18)}}的其他基金

CAREER: Generating Hierarchical Vector-Valued Data Summaries for Scalable Flow Data Processing, Analysis and Visualization
职业:为可扩展流数据处理、分析和可视化生成分层向量值数据摘要
  • 批准号:
    1553329
  • 财政年份:
    2016
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Continuing Grant
EAGER: Define and Construct an Enhanced Graph Representation for Multiscale Vector Field Data Summarization
EAGER:定义和构建多尺度矢量场数据汇总的增强图形表示
  • 批准号:
    1352722
  • 财政年份:
    2013
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大​​风暴潮的多尺度动力学过程
  • 批准号:
    2342516
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Research Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
  • 批准号:
    2415082
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Standard Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 52.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了