Thermodynamics of Interfaces: Theory to Atomistic Modeling

界面热力学:原子建模理论

基本信息

  • 批准号:
    2103431
  • 负责人:
  • 金额:
    $ 35.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research aimed at advancing the fundamental understanding of grain boundary thermodynamics and kinetics by atomistic computer modeling. Interfaces in crystalline materials play an essential role in many areas of science and technology. Almost all engineering materials contain internal interfaces separating crystalline domains (grains) with different crystallographic orientations. These interfaces, called grain boundaries, often control the structural stability and properties of the material. For example, the solute elements in alloys often segregate to grain boundaries and make the alloy either stronger or catastrophically brittle. The design of new alloys heavily relies on the ability of researchers to understand and control grain boundary segregation and its effect on physical properties. In this project, The PI will investigate the mechanisms of grain boundary segregation and grain boundary diffusion in Cu-Ag and Al-Mg alloy systems. The research will uncover key relationships between the thermodynamic (segregation) and kinetic (diffusion and migration) grain boundary properties. A diverse set of representative boundaries will be tested to demonstrate the generality of the results across different grain boundary types.This project will impact several areas of materials science, physics, chemistry, and technology by expanding the fundamental knowledge of interface thermodynamics and kinetics, and by creating new capabilities for computational prediction of interface properties. To enhance the broader impacts, the PI will organize workshops and symposia on broad topics related to materials interfaces across different disciplines. The PI and the students will also visit local high schools and give popular presentations featuring computational materials science with examples based on this project. When teaching graduate courses at Mason, the PI will utilize this research as a source of examples for lectures, homework assignments, and topics of term projects.TECHNICAL SUMMARYThis award supports theoretical and computational research aimed at advancing the fundamental understanding of grain boundary thermodynamics and kinetics by atomistic computer modeling. Grain boundaries often control the structural stability, mechanical behavior, and physical properties of engineering materials. Specific goals of this project include: (1) Discover the fundamental mechanisms of grain boundary segregation and diffusion in alloys systems; (2) Investigate thermodynamics of grain boundary phase transformations; (3) Uncover relationships between the thermodynamic (segregation) and kinetic (diffusion) properties; (4) Investigate the solute drag effect by moving grain boundaries; and (5) Investigate the dynamic phase transformations in moving grain boundaries by direct molecular dynamics modeling. The primary approach to achieving these goals is a tight integration of molecular dynamics, Monte Carlo simulations, and the jump correlation analysis. Cu-Ag and Al-Mg alloys will be chosen as model systems. A diverse set of representative grain boundaries will be tested to demonstrate the generality of the results. This project will impact several areas of materials science, physics, chemistry, and technology by expanding the fundamental knowledge of interface thermodynamics and kinetics, and by creating new capabilities for computational prediction of interface properties. To enhance the broader impacts, the PI will organize workshops and symposia on broad topics related to materials interfaces across different disciplines. The PI and the students will also visit local high schools and give popular presentations featuring computational materials science with examples based on this project. When teaching graduate courses at Mason, the PI will utilize this research as a source of examples for lectures, homework assignments, and topics of term projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持旨在通过原子计算机建模增进对晶界热力学和动力学的基本理解的理论和计算研究。晶体材料中的界面在许多科学技术领域发挥着重要作用。几乎所有工程材料都包含分隔具有不同晶体取向的晶域(晶粒)的内部界面。这些界面称为晶界,通常控制材料的结构稳定性和性能。例如,合金中的溶质元素通常会偏析到晶界,使合金要么变得更强,要么变得非常脆。新合金的设计很大程度上依赖于研究人员理解和控制晶界偏析及其对物理性能影响的能力。在该项目中,PI 将研究 Cu-Ag 和 Al-Mg 合金体系中晶界偏析和晶界扩散的机制。该研究将揭示热力学(偏析)和动力学(扩散和迁移)晶界特性之间的关键关系。将测试一组不同的代表性边界,以证明不同晶界类型结果的通用性。该项目将通过扩展界面热力学和动力学的基础知识,并创建界面特性计算预测的新功能,对材料科学、物理、化学和技术的多个领域产生影响。为了增强更广泛的影响,PI 将组织研讨会和研讨会,讨论与不同学科的材料界面相关的广泛主题。 PI和学生还将参观当地高中,并以计算材料科学为主题并结合基于该项目的示例进行流行演讲。在梅森教授研究生课程时,PI 将利用这项研究作为讲座、家庭作业和学期项目主题的示例来源。技术摘要该奖项支持旨在通过原子计算机建模增进对晶界热力学和动力学的基本理解的理论和计算研究。晶界通常控制工程材料的结构稳定性、机械行为和物理性能。该项目的具体目标包括:(1)揭示合金体系晶界偏析和扩散的基本机制; (2) 研究晶界相变的热力学; (3) 揭示热力学(偏析)和动力学(扩散)性质之间的关系; (4) 通过移动晶界研究溶质拖曳效应; (5) 通过直接分子动力学建模研究移动晶界的动态相变。实现这些目标的主要方法是分子动力学、蒙特卡罗模拟和跳跃相关分析的紧密结合。将选择 Cu-Ag 和 Al-Mg 合金作为模型系统。将测试一组不同的代表性晶界以证明结果的普遍性。该项目将扩展界面热力学和动力学的基础知识,并创建界面特性计算预测的新功能,从而影响材料科学、物理、化学和技术的多个领域。为了增强更广泛的影响,PI 将组织研讨会和研讨会,讨论与不同学科的材料界面相关的广泛主题。 PI和学生还将参观当地高中,并以计算材料科学为主题并结合基于该项目的示例进行流行演讲。在梅森教授研究生课程时,PI 将利用这项研究作为讲座、家庭作业和学期项目主题的示例来源。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Point-defect avalanches mediate grain boundary diffusion
  • DOI:
    10.1038/s43246-022-00314-7
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    I. Chesser;Y. Mishin
  • 通讯作者:
    I. Chesser;Y. Mishin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Mishin其他文献

Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys
NiAl合金马氏体相变的分子动力学模拟
The origin of strings and rings in the atomic dynamics of disordered systems
无序系统原子动力学中弦和环的起源
  • DOI:
    10.1016/j.actamat.2025.121212
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Omar Hussein;Yang Li;Yuri Mishin
  • 通讯作者:
    Yuri Mishin
Compressive strength of twinned Ni-Co nanoparticles: In-situ experiments and atomistic simulations
孪晶镍钴纳米粒子的抗压强度:原位实验与原子模拟
  • DOI:
    10.1016/j.matdes.2025.114208
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Anuj Bisht;Raj Kiran Koju;Yuanshen Qi;Eugen Rabkin;Yuri Mishin
  • 通讯作者:
    Yuri Mishin
Atomic-level mechanisms of short-circuit diffusion in materials
材料中短路扩散的原子级机制
A model of thermodynamic stabilization of nanocrystalline grain boundaries in alloy systems
  • DOI:
    10.1016/j.actamat.2024.120404
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Omar Hussein;Yuri Mishin
  • 通讯作者:
    Yuri Mishin

Yuri Mishin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri Mishin', 18)}}的其他基金

NSF-BSF: Architecting metallic nanoparticles for ultimate strength
NSF-BSF:构建金属纳米颗粒以获得终极强度
  • 批准号:
    1904428
  • 财政年份:
    2019
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
Thermodynamics of Interfaces: Theory to Atomistic Modeling
界面热力学:原子建模理论
  • 批准号:
    1708314
  • 财政年份:
    2017
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
Thermodynamics of Interfaces: From Theory to Atomistic Modeling
界面热力学:从理论到原子建模
  • 批准号:
    1308667
  • 财政年份:
    2013
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant

相似海外基金

Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Research Grant
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137147
  • 财政年份:
    2022
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137157
  • 财政年份:
    2022
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Standard Grant
Theory of complex oxides: superconductivity and interfaces
复合氧化物理论:超导性和界面
  • 批准号:
    RGPIN-2018-04878
  • 财政年份:
    2022
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Development and Application of First-Principles Dielectric Embedding Many-Body Perturbation Theory for Heterogeneous Interfaces
职业:异质界面第一性原理电介质嵌入多体摄动理论的发展与应用
  • 批准号:
    2044552
  • 财政年份:
    2021
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Continuing Grant
Theory of complex oxides: superconductivity and interfaces
复合氧化物理论:超导性和界面
  • 批准号:
    RGPIN-2018-04878
  • 财政年份:
    2021
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Discovery Grants Program - Individual
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
  • 批准号:
    RGPIN-2016-03942
  • 财政年份:
    2021
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of complex oxides: superconductivity and interfaces
复合氧化物理论:超导性和界面
  • 批准号:
    RGPIN-2018-04878
  • 财政年份:
    2020
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Discovery Grants Program - Individual
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
  • 批准号:
    RGPIN-2016-03942
  • 财政年份:
    2020
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of gap states at metal/semiconductor interfaces; annihilation mechanism and deformation in electric fields
金属/半导体界面的能隙态理论;
  • 批准号:
    20K03815
  • 财政年份:
    2020
  • 资助金额:
    $ 35.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了