Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
基本信息
- 批准号:10022302
- 负责人:
- 金额:$ 32.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-21 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlgorithmsAllyArchitectureBackBindingClinicalClinical ResearchCloud ComputingCodeCommunitiesComplementComputer softwareDataDevelopmentDocumentationEcosystemEducational MaterialsEducational workshopEnvironmentEstrogen receptor positiveEuropeFosteringFunding OpportunitiesGoalsGrowthHigh Performance ComputingImageIndustryInfrastructureInstitutionInternationalIonizing radiationLibrariesLinuxMRI ScansMagnetic Resonance ImagingMaintenanceMemoryMethodsModalityModernizationMonitorMotivationMovementNeurosciences ResearchOperating SystemPerformancePolishesPublishingPythonsRenaissanceReproducibilityResearchResourcesScanningScheduleScienceSiteSoftware FrameworkSoftware ToolsStandardizationTechniquesTechnologyTestingTimeTraining ActivityTranslatingUnited StatesUpdateVendorVisualWorkX-Ray Computed Tomographybasebioimagingclinical practiceclinical translationcloud basedcluster computingcomputational platformcomputerized data processingdata warehouseexperiencefile formatgraphical user interfaceimage reconstructionimaging modalityimprovedinnovationinterestinteroperabilitymanneuroimagingnon-invasive imagingopen sourceparallel computerparitypre-clinical researchprogram disseminationquality assurancereconstructionresearch clinical testingresponsesoft tissuesoftware infrastructuretoolusabilityweb pageweb portalwebinar
项目摘要
Project Abstract
Motivation: This proposal, titled Interoperable Software Platform for Reproducible Research and Clinical
Translation of MRI, is in response to the U24 funding opportunity RFA-EB-18-002, Resources for Technology
Dissemination. Magnetic resonance imaging (MRI) is non-invasive, non-ionizing, and offers superb soft tissue
contrast, but is traditionally limited by long scan times. Recently, advances in numerical image reconstruction and
availability of powerful hardware platforms have led to new MRI scanning techniques with dramatic reductions
in scan times. However, the associated computational sophistication has posed a large barrier to reproducibil-
ity and clinical translation. This proposal addresses this fundamental issue by establishing best practices and
infrastructure for reproducible research in MRI.
Initial work toward this goal spanning six years has led to the development of the BART software toolbox for
computational MRI. BART implements advanced MRI reconstruction algorithms in an extensible manner so that
new technological advances can build off of the collective progress in the field. Supported computational back-
ends including multi-CPU and multi-GPU architectures afford efficient use in a clinical translation environment.
Project dissemination has been met with strong interest from the international MRI research community, having
grown a user-base spanning over 50 academic and industry sites. Nonetheless, current limitations in project in-
frastructure and support have hindered more widespread dissemination. Therefore, the major emphasis here is
expanding development to improve usability, creation of written and audio-visual educational material, integration
with other tools, cloud-based support, and software reliability. This will (1) provide new users common ground
for starting new projects, (2) allow them to use their existing workflows with BART, (3) move to more accessible
computation platforms, and (4) reliably translate their work into clinical practice.
Approach: The project will proceed with four interrelated aims, supported by user training activities. Aim 1 will
focus on adding comprehensive documentation and creating example-based tutorials. Aim 2 will expand interop-
erability with software platforms and vendor tools used by the MRI community. Aim 3 will complete infrastructure
and backends for cloud and parallel computing. Aim 4 will improve software reliability and quality assurance. The
work will be disseminated through online material, webinars and workshops.
Significance: This work will enable development, creation and reproducibility of modern state-of-the art MRI
reconstruction methods that rely on highly specialized data processing approaches. MRI development will be
streamlined as new methods build off of reliable infrastructure and existing work. Improved sustainability and
reliability will enable rapid dissemination of new work into clinical evaluation and practice while significantly
reducing the technical burden normally associated with clinical translation.
项目摘要
动机:该提案题为可重复研究和临床的互操作软件平台,
MRI的翻译,是为了响应U24的资金机会RFA-EB-18-002,技术资源
传播。磁共振成像(MRI)是非侵入性,非电离,并提供极好的软组织
对比度,但传统上受到长扫描时间的限制。近年来,数字图像重建和重建技术取得了一些进展,
强大的硬件平台的可用性导致了新的MRI扫描技术,
在扫描时间。然而,相关的计算复杂性对再现性造成了很大的障碍,
临床和翻译。本提案通过确立最佳做法和
MRI可重复研究的基础设施。
为实现这一目标,最初的工作历时六年,已经开发了BART软件工具箱,
计算机核磁共振成像BART以可扩展的方式实现高级MRI重建算法,
新的技术进步可以建立在该领域的集体进步之上。支持的计算回-
包括多CPU和多GPU架构的终端在临床翻译环境中提供了有效的使用。
项目的传播受到了国际MRI研究界的强烈关注,
在50多个学术和行业网站上建立了用户群。尽管如此,目前在项目中的限制-
基础设施和支助阻碍了更广泛的传播。因此,这里的重点是
扩大开发,以提高可用性,编写书面和视听教材,整合
其他工具、基于云的支持和软件可靠性。这将(1)为新用户提供共同点
开始新的项目,(2)允许他们使用现有的工作流程与BART,(3)移动到更方便
计算平台,以及(4)可靠地将他们的工作转化为临床实践。
方法:该项目将在用户培训活动的支持下,实现四个相互关联的目标。目标1将
专注于添加全面的文档和创建基于示例的教程。目标2将扩大互操作性-
MRI社区使用的软件平台和供应商工具的可删除性。目标3将完成基础设施
以及云计算和并行计算的后端。目标4将提高软件的可靠性和质量保证。的
将通过在线材料、网络研讨会和讲习班传播工作成果。
意义:这项工作将使现代最先进的MRI的开发,创造和再现成为可能。
重建方法依赖于高度专业化的数据处理方法。MRI的发展将是
随着新方法在可靠的基础设施和现有工作的基础上不断发展,提高可持续性,
可靠性将使新的工作迅速传播到临床评价和实践中,
减少了通常与临床翻译相关的技术负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lustig其他文献
Michael Lustig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lustig', 18)}}的其他基金
Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
- 批准号:
10436300 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
- 批准号:
10218169 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
- 批准号:
10669157 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10491708 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10677036 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
- 批准号:
10265503 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:














{{item.name}}会员




