Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI

用于 MRI 可重复研究和临床转化的可互操作软件平台

基本信息

  • 批准号:
    10491708
  • 负责人:
  • 金额:
    $ 30.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-21 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Abstract Motivation: This proposal, titled Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI, is in response to the U24 funding opportunity RFA-EB-18-002, Resources for Technology Dissemination. Magnetic resonance imaging (MRI) is non-invasive, non-ionizing, and offers superb soft tissue contrast, but is traditionally limited by long scan times. Recently, advances in numerical image reconstruction and availability of powerful hardware platforms have led to new MRI scanning techniques with dramatic reductions in scan times. However, the associated computational sophistication has posed a large barrier to reproducibil- ity and clinical translation. This proposal addresses this fundamental issue by establishing best practices and infrastructure for reproducible research in MRI. Initial work toward this goal spanning six years has led to the development of the BART software toolbox for computational MRI. BART implements advanced MRI reconstruction algorithms in an extensible manner so that new technological advances can build off of the collective progress in the field. Supported computational back- ends including multi-CPU and multi-GPU architectures afford efficient use in a clinical translation environment. Project dissemination has been met with strong interest from the international MRI research community, having grown a user-base spanning over 50 academic and industry sites. Nonetheless, current limitations in project in- frastructure and support have hindered more widespread dissemination. Therefore, the major emphasis here is expanding development to improve usability, creation of written and audio-visual educational material, integration with other tools, cloud-based support, and software reliability. This will (1) provide new users common ground for starting new projects, (2) allow them to use their existing workflows with BART, (3) move to more accessible computation platforms, and (4) reliably translate their work into clinical practice. Approach: The project will proceed with four interrelated aims, supported by user training activities. Aim 1 will focus on adding comprehensive documentation and creating example-based tutorials. Aim 2 will expand interop- erability with software platforms and vendor tools used by the MRI community. Aim 3 will complete infrastructure and backends for cloud and parallel computing. Aim 4 will improve software reliability and quality assurance. The work will be disseminated through online material, webinars and workshops. Significance: This work will enable development, creation and reproducibility of modern state-of-the art MRI reconstruction methods that rely on highly specialized data processing approaches. MRI development will be streamlined as new methods build off of reliable infrastructure and existing work. Improved sustainability and reliability will enable rapid dissemination of new work into clinical evaluation and practice while significantly reducing the technical burden normally associated with clinical translation.
项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Lustig其他文献

Michael Lustig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Lustig', 18)}}的其他基金

Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
  • 批准号:
    10436300
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
  • 批准号:
    10218169
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
Enabling the Next Generation of High Performance Pediatric Whole Body MR Imaging
实现下一代高性能儿科全身 MR 成像
  • 批准号:
    10669157
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
  • 批准号:
    10677036
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
  • 批准号:
    10265503
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
Interoperable Software Platform for Reproducible Research and Clinical Translation of MRI
用于 MRI 可重复研究和临床转化的可互操作软件平台
  • 批准号:
    10022302
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
Node-Pore Sensing for Cellular Screening
用于细胞筛查的节点孔传感
  • 批准号:
    8893816
  • 财政年份:
    2015
  • 资助金额:
    $ 30.45万
  • 项目类别:
Rapid Robust Pediatric MRI
快速稳健的儿科 MRI
  • 批准号:
    9754130
  • 财政年份:
    2010
  • 资助金额:
    $ 30.45万
  • 项目类别:
Rapid Robust Pediatric MRI
快速稳健的儿科 MRI
  • 批准号:
    10155483
  • 财政年份:
    2010
  • 资助金额:
    $ 30.45万
  • 项目类别:
Rapid Robust Pediatric MRI
快速稳健的儿科 MRI
  • 批准号:
    9595406
  • 财政年份:
    2010
  • 资助金额:
    $ 30.45万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了