Motivic structures in physics

物理学中的动机结构

基本信息

  • 批准号:
    1201512
  • 负责人:
  • 金额:
    $ 18.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The theory of motives, initiated by Grothendieck, is one of the highlights of modern algebraic geometry. It was initially motivated by the existence of several different notions of cohomology for algebraic varieties and the quest for an underlying universal structure. It has since developed into a very complex and fascinating subject of pure mathematics, which is currently still at the center of much ongoing investigation and which, over the years, gave rise to many deep results in arithmetic and algebraic geometry. Given its original motivation and its historic development, the theory of motives appears very far remote from the world of theoretical physics. However, in recent years, explicit computations carried out by physicists working in perturbative quantum field theory, followed by an increasing number of precise mathematical results, have uncovered a deep connection between periods of motives (numerical invariant that, in an appropriate sense, measure the complexity of a motive) and amplitudes of Feynman diagrams in quantum field theory. This project is focused on the role of motives in various branches of theoretical physics, starting from the Feynman amplitudes, by investigating the relations between different models (the parametric Feynman integrals on one side, and the twistor based computations of Feynman amplitudes on the other), but also by using the algebraic varieties that occur in quantum field theory as a testing ground for new theories in algebraic geometry such as the so-called "geometry over the field with one element". Moreover, part of this project investigates the occurrence of motives and periods in statistical physics, through the algebro-geometric properties of the partition function of Ising models and their generalizations, the Potts models. Another part of this project deals with the development of a new theory of "noncommutative motives" and its role in string theory and quantum field theory.This is an interdisciplinary project that bridges between a very abstract field of pure mathematics, the theory of motives, and concrete mathematical models in high-energy physics, statistical physics, and string theory. The research project described above will have the effect of importing new mathematical tools into some fast developing areas of physics, and will also, at the same time, lead to new mathematical results, and the further development of some new branched of pure mathematics, within the research areas of algebraic and arithmetic geometry, through a new input of ideas, motivation, and intuition from physical theories. The project has a strong educational component, with the direct involvement of several graduate and undergraduate students.
Grothendieck提出的基元理论是现代代数几何的重要组成部分之一。它最初的动机是存在几个不同的概念上同调代数簇和寻求一个潜在的普遍结构。 它已经发展成为一个非常复杂和迷人的纯数学学科,目前仍处于许多正在进行的调查的中心,多年来,产生了许多深刻的结果算术和代数几何。考虑到它的原始动机和它的历史发展,动机理论似乎与理论物理学的世界相距甚远。然而,近年来,微扰量子场论物理学家进行的显式计算,以及越来越多的精确数学结果,揭示了量子场论中动机(在适当意义上衡量动机复杂性的数值不变量)周期与费曼图振幅之间的深刻联系。 本项目的重点是动机在理论物理学各个分支中的作用,从费曼振幅开始,通过研究不同模型之间的关系(一边是参数费曼积分,另一边是基于扭量的费曼振幅计算),而且还通过使用量子场论中出现的代数簇作为代数几何中新理论的试验场,例如,叫做“一元域上的几何”此外,该项目的一部分研究统计物理中动机和周期的发生,通过Ising模型及其推广的Potts模型的配分函数的代数几何性质。这个项目的另一部分是关于“非对易动机”的新理论的发展及其在弦论和量子场论中的作用,这是一个跨学科的项目,在非常抽象的纯数学领域、动机理论与高能物理、统计物理和弦论中的具体数学模型之间架起了桥梁。上述研究项目将有新的数学工具导入到一些快速发展的物理领域的影响,也将,在同一时间,导致新的数学成果,和一些新的分支的纯数学的进一步发展,在代数和算术几何的研究领域,通过新的输入的想法,动机,和直觉的物理理论。该项目有很强的教育成分,有几个研究生和本科生的直接参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matilde Marcolli其他文献

Log concavity of the Grothendieck class of $$\overline{{\mathcal {M}}}_{0,n}$$
  • DOI:
    10.1007/s10801-025-01428-0
  • 发表时间:
    2025-06-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Paolo Aluffi;Stephanie Chen;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Formal languages, spin systems, and quasicrystals
形式语言、自旋系统和准晶体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesca Fernandes;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Graph Grammars, Insertion Lie Algebras, and Quantum Field Theory
  • DOI:
    10.1007/s11786-015-0236-y
  • 发表时间:
    2015-08-13
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Matilde Marcolli;Alexander Port
  • 通讯作者:
    Alexander Port
Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry
  • DOI:
    10.1007/s00029-004-0369-3
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Caterina Consani;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Error-Correcting Codes and Phase Transitions
  • DOI:
    10.1007/s11786-010-0031-8
  • 发表时间:
    2010-03-23
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Yuri I. Manin;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli

Matilde Marcolli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matilde Marcolli', 18)}}的其他基金

Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
  • 批准号:
    2104330
  • 财政年份:
    2021
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Continuing Grant
Geometry and Arithmetic in Theoretical Physics
理论物理中的几何与算术
  • 批准号:
    1707882
  • 财政年份:
    2017
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Standard Grant
Noncommutative Geometry Models in Physics
物理学中的非交换几何模型
  • 批准号:
    1205440
  • 财政年份:
    2012
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Continuing Grant
Arithmetic Noncommutative Geometry
算术非交换几何
  • 批准号:
    1007207
  • 财政年份:
    2010
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Standard Grant
Feynman Motives
费曼动机
  • 批准号:
    0901221
  • 财政年份:
    2009
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Noncommutative Geometry and Number Theory
FRG 合作研究:非交换几何与数论
  • 批准号:
    0651925
  • 财政年份:
    2007
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Standard Grant

相似国自然基金

飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
  • 批准号:
    60672101
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
新型嘧啶并三环化合物的合成研究
  • 批准号:
    20572032
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 18.77万
  • 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
  • 批准号:
    10738365
  • 财政年份:
    2023
  • 资助金额:
    $ 18.77万
  • 项目类别:
Elucidation of the physics of solid-liquid-gas three-phase contact line near structures through the integration of nanoscale interfacial technologies
通过纳米级界面技术的集成阐明结构附近固-液-气三相接触线的物理性质
  • 批准号:
    22KK0249
  • 财政年份:
    2023
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CSEDI: Integrated seismic, geodynamic, and mineral physics studies of scatterers and other multi-scale structures in Earth’s lower mantle
CSEDI:地球下地幔散射体和其他多尺度结构的综合地震、地球动力学和矿物物理研究
  • 批准号:
    2303148
  • 财政年份:
    2023
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Continuing Grant
Study of deformation mechanism and mechanical properties of bundle structures based on collaboration between condensed matter physics and mathematical morphology
基于凝聚态物理与数学形态学协同的束结构变形机制与力学性能研究
  • 批准号:
    23H01299
  • 财政年份:
    2023
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Topological physics beneath magnetic structures and interfaces on superconductors
磁结构和超导体界面下的拓扑物理
  • 批准号:
    2745398
  • 财政年份:
    2022
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Studentship
Geometrical structures in mathematical physics
数学物理中的几何结构
  • 批准号:
    RGPIN-2018-05413
  • 财政年份:
    2022
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Discovery Grants Program - Individual
High-Latitude Ionospheric Structures and Dynamics - Physics, Modeling, and Applications
高纬度电离层结构和动力学 - 物理、建模和应用
  • 批准号:
    RGPIN-2018-03704
  • 财政年份:
    2022
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative phase imaging andcomputational specificity (Popescu)
定量相位成像和计算特异性(Popescu)
  • 批准号:
    10705170
  • 财政年份:
    2022
  • 资助金额:
    $ 18.77万
  • 项目类别:
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2022
  • 资助金额:
    $ 18.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了