Geometry and Arithmetic in Theoretical Physics

理论物理中的几何与算术

基本信息

  • 批准号:
    1707882
  • 负责人:
  • 金额:
    $ 16.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This interdisciplinary research project combines methods and motivating questions arising in theoretical physics with mathematical methods of number theory and arithmetic geometry. Surprising connections between these two very different areas of research have been observed in recent years: the principal investigator has been involved in the study of these relationships between high-energy physics and number theory, and she is currently developing new mathematical approaches towards a better understanding of this mysterious connection. The goal of this project is to extend this connection beyond its original occurrence in quantum field theory to other areas, including statistical physics, string theory, and quantum information. This project comprises several related investigations. The Feynman diagram calculations used in high-energy physics to describe events in particle physics experiments have a rich and not yet fully understood mathematical structure, involving motives and periods of algebraic varieties, which are objects of study in algebraic geometry, arithmetic geometry, and number theory. This project aims to develop new techniques to improve understanding of these arithmetic structures in quantum field theory. Similar mathematical structures based on periods and motives of algebraic varieties occur in models of modified gravity developed for applications to cosmology; this new, unexpected development will be investigated in depth as part of the research. The project will also study a framework for a discretization of the "holographic correspondence" of string theory, between gravity on a bulk space and conformal field theory on the boundary, built in number-theoretic terms using p-adic numbers. The project aims to develop this p-adic form of the AdS/CFT correspondence into a larger theoretical framework, with a view to explaining in arithmetic terms the emergence of spacetime geometry from information. The work will also continue development of another novel approach to the relation between geometry and information, a construction of anyon models of topological quantum computation based on special solutions (gravitational instantons) of the Einstein equations, with singularities along two-dimensional surfaces. The investigator is also pursuing new number theoretic approaches to quantum statistical mechanics, where the properties of the quantum systems correspond to properties of certain classes of zeta functions studied in analytic number theory, and the equilibrium states of the systems capture Galois symmetries. Finally, the investigator is developing a new approach to distributed computing in theoretical computer science, based on the technique of dynamical triangulations developed in physics as a model of quantum gravity.
这个跨学科的研究项目将理论物理中的方法和激励问题与数论和算术几何的数学方法结合起来。近年来,这两个非常不同的研究领域之间的惊人联系已经被观察到:首席研究员已经参与了高能物理和数论之间关系的研究,她目前正在开发新的数学方法来更好地理解这种神秘的联系。该项目的目标是将这种联系从最初的量子场论扩展到其他领域,包括统计物理、弦理论和量子信息。这个项目包括几个相关的调查。高能物理中用于描述粒子物理实验事件的费曼图计算具有丰富但尚未完全理解的数学结构,涉及代数变化的动机和周期,是代数几何、算术几何和数论的研究对象。本项目旨在开发新技术,以提高对量子场论中这些算术结构的理解。类似的基于周期和代数变量动机的数学结构出现在为应用于宇宙学而开发的修正引力模型中;这一意想不到的新发展将作为研究的一部分进行深入调查。该项目还将研究一个离散化弦理论“全息对应”的框架,在整体空间上的引力和边界上的共形场理论之间,用p进数建立在数论术语中。该项目旨在将AdS/CFT对应的p进形式发展成一个更大的理论框架,以期用算术术语解释从信息中出现的时空几何。这项工作还将继续发展另一种新的方法来研究几何和信息之间的关系,即基于爱因斯坦方程的特殊解(引力瞬子)的拓扑量子计算的任意子模型的构建,这些模型沿着二维表面具有奇点。研究者也在寻求量子统计力学的新数论方法,其中量子系统的性质对应于解析数论中研究的某些类型的zeta函数的性质,并且系统的平衡状态捕获伽罗瓦对称性。最后,研究者正在开发一种在理论计算机科学中分布式计算的新方法,该方法基于物理学中作为量子引力模型的动态三角测量技术。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nori Diagrams and Persistent Homology
海苔图和持久同源性
  • DOI:
    10.1007/s11786-019-00422-7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Manin, Yuri I.;Marcolli, Matilde
  • 通讯作者:
    Marcolli, Matilde
Persistent Topology of Syntax
语法的持久拓扑
  • DOI:
    10.1007/s11786-017-0329-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Port, Alexander;Gheorghita, Iulia;Guth, Daniel;Clark, John M.;Liang, Crystal;Dasu, Shival;Marcolli, Matilde
  • 通讯作者:
    Marcolli, Matilde
Reconstructing global fields from dynamics in the abelianized Galois group
从阿贝尔化伽罗瓦群的动力学重建全局场
  • DOI:
    10.1007/s00029-019-0469-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cornelissen, Gunther;Li, Xin;Marcolli, Matilde;Smit, Harry
  • 通讯作者:
    Smit, Harry
Characterization of global fields by Dirichlet L-series
  • DOI:
    10.1007/s40993-018-0143-9
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    G. Cornelissen;B. de Smit;Xin Li;M. Marcolli;H. Smit
  • 通讯作者:
    G. Cornelissen;B. de Smit;Xin Li;M. Marcolli;H. Smit
Periods and Motives in the Spectral Action of Robertson–Walker Spacetimes
罗伯逊-沃克时空光谱作用的周期和动机
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matilde Marcolli其他文献

Log concavity of the Grothendieck class of $$\overline{{\mathcal {M}}}_{0,n}$$
  • DOI:
    10.1007/s10801-025-01428-0
  • 发表时间:
    2025-06-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Paolo Aluffi;Stephanie Chen;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Formal languages, spin systems, and quasicrystals
形式语言、自旋系统和准晶体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesca Fernandes;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Graph Grammars, Insertion Lie Algebras, and Quantum Field Theory
  • DOI:
    10.1007/s11786-015-0236-y
  • 发表时间:
    2015-08-13
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Matilde Marcolli;Alexander Port
  • 通讯作者:
    Alexander Port
Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry
  • DOI:
    10.1007/s00029-004-0369-3
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Caterina Consani;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli
Error-Correcting Codes and Phase Transitions
  • DOI:
    10.1007/s11786-010-0031-8
  • 发表时间:
    2010-03-23
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Yuri I. Manin;Matilde Marcolli
  • 通讯作者:
    Matilde Marcolli

Matilde Marcolli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matilde Marcolli', 18)}}的其他基金

Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
  • 批准号:
    2104330
  • 财政年份:
    2021
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Motivic structures in physics
物理学中的动机结构
  • 批准号:
    1201512
  • 财政年份:
    2012
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant
Noncommutative Geometry Models in Physics
物理学中的非交换几何模型
  • 批准号:
    1205440
  • 财政年份:
    2012
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Arithmetic Noncommutative Geometry
算术非交换几何
  • 批准号:
    1007207
  • 财政年份:
    2010
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant
Feynman Motives
费曼动机
  • 批准号:
    0901221
  • 财政年份:
    2009
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Noncommutative Geometry and Number Theory
FRG 合作研究:非交换几何与数论
  • 批准号:
    0651925
  • 财政年份:
    2007
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Arithmetic Structure in Dense Sets
稠密集中的算术结构
  • 批准号:
    2401117
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
  • 批准号:
    2401580
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Standard Grant
Groups and Arithmetic
群与算术
  • 批准号:
    2401098
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 16.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了