Arithmetic Noncommutative Geometry
算术非交换几何
基本信息
- 批准号:1007207
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1007207Principal Investigator: Matilde MarcolliThis proposal aims at using techniques from noncommutative geometry, especially analytic techniques based on functional analysis, operator algebras, global analysis and index theory, to approach questions of relevance to arithmetic geometry. The main themes covered in this proposal include: the theory of noncommutative tori with real multiplication as a parallel for real quadratic fields to the theory of elliptic curves with real multiplication; the use of quantum statistical mechanical systems associated to number fields and function fields as an approach to explicit class field theory; an application of techniques from functional analysis and quantum statistical mechanics to the study of the asymptotic problem for error correcting codes; the construction of invariants of curves with p-adic uniformization from noncommutative geometry, in terms of index theorems and spectral triples; investigating the relation between motives and noncommutative spaces, in relation to L-functions of varieties and motives; relating the noncommutative geometry approach to the Riemann zeta function to arithmetic topology, matrix models, and foliated spaces; understanding manifestations of modularity on the noncommutative boundary of modular curves.The project is interdisciplinary in scope, as it is aimed at exploring the interactions between tools and techniques from noncommutative geometry and motivating problems from number theory and arithmetic. This presents a novel approach to classical questions of modern mathematics, where we plan on using techniques and ideas derived from the world of quantum mechanics, statistical mechanics, and quantum field theory. Noncommutative geometry is especially suitable as a tool, since it was developed precisely a a geometry adapted to quantum physics: as such, it provides a way to combine quantum mechanical ideas and techniques with more classical algebro-geometric and number-theoretic methods. We expect that a continuing investigation of this approach will lead to further advances and developments within the field of noncommutative geometry itself, by the challenge of fine tuning the available theory to fit specific number theoretic problems, while at the same time it will provide new possible approaches and different viewpoints on questions of number theoretic relevance. This proposal has a strong educational components, with six graduate students involved in various parts of the project. A network of international contacts and collaborations will also be involved.
摘要奖:DMS-1007207首席研究员:Matilde Marcoll这项建议旨在利用非对易几何的技术,特别是基于泛函分析、算子代数、整体分析和指数理论的分析技术,来探讨与算术几何相关的问题。这一建议所涵盖的主要主题包括:与实二次域的实乘并行的非交换环面理论到具有实乘的椭圆曲线理论;使用与数域和函数域相关的量子统计力学系统作为显式类域理论的方法;应用泛函分析和量子统计力学的技术来研究纠错码的渐近问题;根据指数定理和谱三元组,从非交换几何构造具有p元均匀的曲线的不变量;研究动机与非交换空间之间的关系,与种类和动机的L函数的关系;将Riemann Zeta函数的非对易几何方法与算术拓扑、矩阵模型和分叶空间联系起来;了解模曲线非对易边界上的模性的表现。该项目范围是跨学科的,因为它的目的是探索非对易几何中的工具和技术之间的相互作用,并从数论和算术中激发问题。这提供了一种解决现代数学经典问题的新方法,我们计划使用源自量子力学、统计力学和量子场论的技术和思想。非对易几何特别适合作为一种工具,因为它恰好是一种适用于量子物理的几何学:因此,它提供了一种将量子力学的思想和技术与更经典的代数几何和数论方法相结合的方法。我们期望对这一方法的持续研究将通过微调现有理论以适应特定的数论问题,从而在非对易几何本身领域内带来进一步的进步和发展,同时它将为数论相关问题提供新的可能的方法和不同的观点。这项提案有很强的教育成分,有六名研究生参与了该项目的各个部分。还将涉及一个国际联系和合作网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matilde Marcolli其他文献
Log concavity of the Grothendieck class of $$\overline{{\mathcal {M}}}_{0,n}$$
- DOI:
10.1007/s10801-025-01428-0 - 发表时间:
2025-06-19 - 期刊:
- 影响因子:0.900
- 作者:
Paolo Aluffi;Stephanie Chen;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Formal languages, spin systems, and quasicrystals
形式语言、自旋系统和准晶体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francesca Fernandes;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Graph Grammars, Insertion Lie Algebras, and Quantum Field Theory
- DOI:
10.1007/s11786-015-0236-y - 发表时间:
2015-08-13 - 期刊:
- 影响因子:1.000
- 作者:
Matilde Marcolli;Alexander Port - 通讯作者:
Alexander Port
Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry
- DOI:
10.1007/s00029-004-0369-3 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Caterina Consani;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Error-Correcting Codes and Phase Transitions
- DOI:
10.1007/s11786-010-0031-8 - 发表时间:
2010-03-23 - 期刊:
- 影响因子:1.000
- 作者:
Yuri I. Manin;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Matilde Marcolli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matilde Marcolli', 18)}}的其他基金
Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
- 批准号:
2104330 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Geometry and Arithmetic in Theoretical Physics
理论物理中的几何与算术
- 批准号:
1707882 - 财政年份:2017
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Noncommutative Geometry Models in Physics
物理学中的非交换几何模型
- 批准号:
1205440 - 财政年份:2012
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Noncommutative Geometry and Number Theory
FRG 合作研究:非交换几何与数论
- 批准号:
0651925 - 财政年份:2007
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
- 批准号:
22K03285 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Discovery Grants Program - Individual
Type III Noncommutative Geometry and KK-theory
III 类非交换几何和 KK 理论
- 批准号:
RGPIN-2017-04718 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Discovery Grants Program - Individual
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Discovery Grants Program - Individual
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
571975-2022 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
University Undergraduate Student Research Awards
Conference: Facets of Noncommutative Geometry
会议:非交换几何的方面
- 批准号:
2203450 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant














{{item.name}}会员




