CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
基本信息
- 批准号:2130263
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in artificial intelligence (AI) have transformed many important domains of modern life such as transportation, finance, education, healthcare, and entertainment. This project addresses application of AI to disaster scene assessment (DSA). For DSA, artificial intelligence can be used to automatically identify damage severity of impacted areas from imagery reports in the aftermath of a disaster such as earthquake, hurricane, or landslides. A key limitation of AI based techniques is the black-box nature of many contemporary models and the consequent lack of interpretability of the results and failures. This project investigates the problem of troubleshooting, tuning, and eventually improving the black-box AI algorithms by integrating human intelligence with machine intelligence through active crowd-AI interactions. The work complements the prevailing AI solutions that primarily focus on AI model design and training sample collection. The results from this project will open up unprecedented opportunities of fully exploring the wisdom from the crowd in various crowd-assisted AI application domains. This project will also provide opportunities for students in STEM and from underrepresented groups to study the interaction between AI and humans. This project develops a DeepCrowd framework that can be used to guide the design, development, and implementation of future crowd-AI applications where the human intelligence obtained from the crowd is tightly integrated with AI deep learning models to significantly improve the system performance over the AI-only or human-only solutions. The project addresses the black-box challenges of AI and the crowdsourcing platform in DeepCrowd using an interdisciplinary approach inspired by techniques from AI, machine learning, estimation theory, and cyber-human interactions. In particular, the research includes i) developing a crowd task generation scheme to effectively query the crowdsourcing platform for feedback; ii) creating a novel adaptive mechanism to incentivize the crowd for timely and accurate response; iii) designing an interactive attention neural network scheme that enables direct interaction between crowd and AI models; and iv) developing a crowd and AI integration engine that effectively incorporates feedback from crowd to alleviate failure scenarios of AI. The resulting DeepCrowd framework is transformative in that it will produce a set of new crowd-AI interaction models and techniques to build novel crowd-assisted AI applications with boosted system performance.This project develops a DeepCrowd framework that can be used to guide the design, development, and implementation of future crowd-AI applications where the human intelligence obtained from the crowd is tightly integrated with AI deep learning models to significantly improve the system performance over the AI-only or human-only solutions. The project addresses the black-box challenges of AI and the crowdsourcing platform in DeepCrowd using an interdisciplinary approach inspired by techniques from AI, machine learning, estimation theory, and cyber-human interactions. In particular, the research includes i) developing a crowd task generation scheme to effectively query the crowdsourcing platform for feedback; ii) creating a novel adaptive mechanism to incentivize the crowd for timely and accurate response; iii) designing an interactive attention neural network scheme that enables direct interaction between crowd and AI models; and iv) developing a crowd and AI integration engine that effectively incorporates feedback from crowd to alleviate failure scenarios of AI. The resulting DeepCrowd framework is transformative in that it will produce a set of new crowd-AI interaction models and techniques to build novel crowd-assisted AI applications with boosted system performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)的最新进展已经改变了现代生活的许多重要领域,如交通、金融、教育、医疗保健和娱乐。本项目涉及人工智能在灾难现场评估(DSA)中的应用。对于DSA,人工智能可用于在地震、飓风或山体滑坡等灾难发生后,从图像报告中自动识别受影响地区的破坏严重程度。基于人工智能的技术的一个关键限制是许多当代模型的黑箱性质,以及由此导致的结果和失败缺乏可解释性。该项目通过积极的人群-人工智能交互,将人类智能与机器智能相结合,研究故障排除、调优并最终改进黑箱人工智能算法的问题。这项工作补充了主要关注人工智能模型设计和训练样本收集的主流人工智能解决方案。该项目的成果将为在各个人群辅助人工智能应用领域充分挖掘人群智慧提供前所未有的机会。该项目还将为STEM专业的学生和代表性不足的群体提供机会,研究人工智能与人类之间的互动。该项目开发了一个DeepCrowd框架,可用于指导未来人群-人工智能应用的设计、开发和实现,其中从人群中获得的人类智能与人工智能深度学习模型紧密集成,以显著提高系统性能,优于人工智能或人工智能解决方案。该项目采用跨学科方法解决人工智能和DeepCrowd众包平台的黑箱挑战,该方法受到人工智能、机器学习、估计理论和网络-人类交互技术的启发。具体而言,研究包括:1)开发一种众包任务生成方案,以有效地查询众包平台以获得反馈;Ii)创造一种新的适应机制,激励人群做出及时准确的反应;iii)设计交互式注意力神经网络方案,实现人群与人工智能模型之间的直接交互;iv)开发人群与人工智能集成引擎,有效整合人群反馈,缓解人工智能故障场景。由此产生的DeepCrowd框架具有变革性,因为它将产生一套新的人群-人工智能交互模型和技术,以构建具有提升系统性能的新型人群辅助人工智能应用程序。该项目开发了一个DeepCrowd框架,可用于指导未来人群-人工智能应用的设计、开发和实现,其中从人群中获得的人类智能与人工智能深度学习模型紧密集成,以显著提高系统性能,优于人工智能或人工智能解决方案。该项目采用跨学科方法解决人工智能和DeepCrowd众包平台的黑箱挑战,该方法受到人工智能、机器学习、估计理论和网络-人类交互技术的启发。具体而言,研究包括:1)开发一种众包任务生成方案,以有效地查询众包平台以获得反馈;Ii)创造一种新的适应机制,激励人群做出及时准确的反应;iii)设计交互式注意力神经网络方案,实现人群与人工智能模型之间的直接交互;iv)开发人群与人工智能集成引擎,有效整合人群反馈,缓解人工智能故障场景。由此产生的DeepCrowd框架具有变革性,因为它将产生一套新的人群-人工智能交互模型和技术,以构建具有提升系统性能的新型人群辅助人工智能应用程序。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CollabLearn: An Uncertainty-Aware Crowd-AI Collaboration System for Cultural Heritage Damage Assessment
- DOI:10.1109/tcss.2021.3109143
- 发表时间:2022-10
- 期刊:
- 影响因子:5
- 作者:Yang Zhang;Ruohan Zong;Ziyi Kou;Lanyu Shang;Dong Wang
- 通讯作者:Yang Zhang;Ruohan Zong;Ziyi Kou;Lanyu Shang;Dong Wang
On streaming disaster damage assessment in social sensing: A crowd-driven dynamic neural architecture searching approach
- DOI:10.1016/j.knosys.2021.107984
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yang Zhang;Ruohan Zong;Ziyi Kou;Lanyu Shang;Dong Wang
- 通讯作者:Yang Zhang;Ruohan Zong;Ziyi Kou;Lanyu Shang;Dong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Wang其他文献
Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser
使用种子自由电子激光器在水窗中生成高亮度、相干的软 X 射线脉冲
- DOI:
10.1103/physrevaccelbeams.20.010702 - 发表时间:
2017-01 - 期刊:
- 影响因子:1.7
- 作者:
Kaishang Zhou;Chao Feng;Haixiao Deng;Dong Wang - 通讯作者:
Dong Wang
Controllable preparation of monolayer MoO3/MoOx by using plasma oxidation and atomic layer etching
等离子体氧化和原子层刻蚀可控制备单层MoO3/MoOx
- DOI:
10.1016/j.matlet.2020.128227 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Shaoan Yan;Hailong Wang;Songwen Luo;Dong Wang;Jun Gong;Penghong Luo;Minghua Tang;Xuejun Zheng - 通讯作者:
Xuejun Zheng
Optimization of sintering parameters for fabrication of Al2O3/TiN/TiC micro-nano-composite ceramic tool material based on microstructure evolution simulation
基于微观结构演化模拟的Al2O3/TiN/TiC微纳复合陶瓷刀具材料烧结参数优化
- DOI:
10.1016/j.ceramint.2020.10.164 - 发表时间:
2020-10 - 期刊:
- 影响因子:5.2
- 作者:
Dong Wang;Yifan Bai;Chao Xue;Yan Cao;Zhenghu Yan - 通讯作者:
Zhenghu Yan
Optimal Design of Three-Dimensional Voxel Printed Multimaterial Lattice Metamaterials via Machine Learning and Evolutionary Algorithm
通过机器学习和进化算法优化三维体素印刷多材料晶格超材料
- DOI:
10.1103/physrevapplied.18.054050 - 发表时间:
2022-11 - 期刊:
- 影响因子:4.6
- 作者:
Le Dong;Dong Wang - 通讯作者:
Dong Wang
Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks
宏小蜂窝无线网络下的同层和跨层设备到设备通信的性能分析
- DOI:
10.3837/tiis.2016.04.001 - 发表时间:
2016-04 - 期刊:
- 影响因子:1.5
- 作者:
Zhu Xiao;Hassana Maigary Georges;Zhinian Luo;Dong Wang - 通讯作者:
Dong Wang
Dong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Wang', 18)}}的其他基金
FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
- 批准号:
2202481 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105032 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
- 批准号:
2102339 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
2140999 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
2131622 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
- 批准号:
2008228 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
1845639 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
1831669 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
- 批准号:
1637251 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors
CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统
- 批准号:
1566465 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant