FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
基本信息
- 批准号:2202481
- 负责人:
- 金额:$ 85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Students often have difficulty estimating their own level of knowledge. The goal of this project is to research ways to improve students' ability to estimate their knowledge, using a student support system consisting of short training exercises that will be personalized with artificial intelligence (AI) methods. While there is abundant research on AI methods in educational contexts, such projects rarely consider some of the key social and human factors, such as privacy and fairness, that are needed for widespread adoption of personalized educational software. This project addresses these issues with a novel decentralized AI framework that is specifically for education contexts. The project framework will enable researchers to create AI systems that provide feedback to students as part of their training exercises, all without directly accessing their data and while also training the AI system to reduce biases related to key aspects of students' identity, such as their demographics. The training exercises will include educational activities where students estimate their test scores, receive feedback from the AI system, and reflect on their knowledge. The privacy and fairness capabilities of the project framework will transform postsecondary online learning, which is poised to benefit from emerging AI-driven learning technologies but has yet to fully realize these benefits. The project will directly benefit students participating in the research as they will improve their knowledge estimation skills, prepare more effectively for tests in class, and learn about potential privacy violations and AI biases. Given the fairness focus of the project, the team of researchers will pay special attention to benefits for students from groups traditionally underrepresented in STEM (Science, Technology, Engineering, and Mathematics), ensuring that the AI-powered framework is equally helpful for them and that their perspectives on privacy and fairness receive special attention.This project will advance AI research by incorporating, both, a strict privacy guarantee for student data and fairness considerations across multiple student demographic groups. Additionally, it will advance education research by determining how effective preemptive feedback is for improving knowledge estimation skills, and will examine the mechanism by which preemptively improving knowledge estimation influences academic outcomes. In particular, the project will achieve four research objectives through interdisciplinary innovations in both learning sciences and technology. First, the team will determine how much students' metacognitive calibration can be improved via AI-powered preemptive feedback, which may be perceived differently by students than post hoc feedback. Second, the project will expand theoretical understanding of metacognitive calibration and calibration interventions by studying the mechanism by which the intervention in the project works. Third, the team will address the fundamental tradeoff between the fairness and accuracy of AI models via an innovative federated learning model. Fourth, the team will evaluate the AI framework on real-world education datasets and compare its performance with the state-of-the-art baselines in terms of protecting privacy and mitigating bias. The project team will disseminate results of the project through workshops, publications, and interactive activities, and will train undergraduate and graduate students from diverse backgrounds throughout the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学生往往难以估计自己的知识水平。该项目的目标是研究如何提高学生的能力,估计他们的知识,使用一个学生支持系统,包括短期的训练练习,将与人工智能(AI)方法个性化。虽然在教育背景下对人工智能方法进行了大量研究,但这些项目很少考虑一些关键的社会和人为因素,例如隐私和公平,而这些因素是广泛采用个性化教育软件所必需的。该项目通过一个专门针对教育环境的新型去中心化AI框架来解决这些问题。该项目框架将使研究人员能够创建人工智能系统,作为训练练习的一部分向学生提供反馈,所有这些都不直接访问他们的数据,同时还训练人工智能系统以减少与学生身份关键方面相关的偏见,例如他们的人口统计数据。培训活动将包括教育活动,学生可以评估他们的考试成绩,从人工智能系统获得反馈,并反思他们的知识。该项目框架的隐私和公平能力将改变中学后在线学习,这将受益于新兴的人工智能驱动的学习技术,但尚未完全实现这些好处。该项目将使参与研究的学生直接受益,因为他们将提高知识评估技能,更有效地准备课堂测试,并了解潜在的隐私侵犯和人工智能偏见。考虑到该项目的公平性,研究人员团队将特别关注传统上在STEM中代表性不足的群体的学生的利益(科学、技术、工程和数学),确保人工智能驱动的框架对他们同样有帮助,并确保他们对隐私和公平的观点得到特别关注。该项目将通过结合,学生数据的严格隐私保证以及对多个学生群体的公平考虑。此外,它将通过确定如何有效的先发制人的反馈是提高知识估计技能,并将检查先发制人的提高知识估计影响学术成果的机制,推进教育研究。特别是,该项目将通过学习科学和技术的跨学科创新实现四个研究目标。首先,该团队将确定学生的元认知校准可以通过人工智能驱动的抢先反馈来改善多少,学生可能会对这种反馈的感知与事后反馈不同。其次,该项目将通过研究项目中干预的机制来扩展对元认知校准和校准干预的理论理解。第三,该团队将通过创新的联邦学习模型来解决AI模型的公平性和准确性之间的根本权衡。第四,该团队将在真实世界的教育数据集上评估人工智能框架,并将其在保护隐私和减轻偏见方面的表现与最先进的基线进行比较。项目团队将通过研讨会、出版物和互动活动传播项目成果,并将在整个项目过程中培训来自不同背景的本科生和研究生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Wang其他文献
Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser
使用种子自由电子激光器在水窗中生成高亮度、相干的软 X 射线脉冲
- DOI:
10.1103/physrevaccelbeams.20.010702 - 发表时间:
2017-01 - 期刊:
- 影响因子:1.7
- 作者:
Kaishang Zhou;Chao Feng;Haixiao Deng;Dong Wang - 通讯作者:
Dong Wang
Controllable preparation of monolayer MoO3/MoOx by using plasma oxidation and atomic layer etching
等离子体氧化和原子层刻蚀可控制备单层MoO3/MoOx
- DOI:
10.1016/j.matlet.2020.128227 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Shaoan Yan;Hailong Wang;Songwen Luo;Dong Wang;Jun Gong;Penghong Luo;Minghua Tang;Xuejun Zheng - 通讯作者:
Xuejun Zheng
Optimization of sintering parameters for fabrication of Al2O3/TiN/TiC micro-nano-composite ceramic tool material based on microstructure evolution simulation
基于微观结构演化模拟的Al2O3/TiN/TiC微纳复合陶瓷刀具材料烧结参数优化
- DOI:
10.1016/j.ceramint.2020.10.164 - 发表时间:
2020-10 - 期刊:
- 影响因子:5.2
- 作者:
Dong Wang;Yifan Bai;Chao Xue;Yan Cao;Zhenghu Yan - 通讯作者:
Zhenghu Yan
Optimal Design of Three-Dimensional Voxel Printed Multimaterial Lattice Metamaterials via Machine Learning and Evolutionary Algorithm
通过机器学习和进化算法优化三维体素印刷多材料晶格超材料
- DOI:
10.1103/physrevapplied.18.054050 - 发表时间:
2022-11 - 期刊:
- 影响因子:4.6
- 作者:
Le Dong;Dong Wang - 通讯作者:
Dong Wang
Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks
宏小蜂窝无线网络下的同层和跨层设备到设备通信的性能分析
- DOI:
10.3837/tiis.2016.04.001 - 发表时间:
2016-04 - 期刊:
- 影响因子:1.5
- 作者:
Zhu Xiao;Hassana Maigary Georges;Zhinian Luo;Dong Wang - 通讯作者:
Dong Wang
Dong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Wang', 18)}}的其他基金
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105032 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
- 批准号:
2102339 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
2140999 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
2131622 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
- 批准号:
2130263 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
- 批准号:
2008228 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
1845639 - 财政年份:2019
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
1831669 - 财政年份:2018
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
- 批准号:
1637251 - 财政年份:2016
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors
CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统
- 批准号:
1566465 - 财政年份:2016
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
相似国自然基金
多组学联合分子对接技术揭示益生菌PMCD对微囊藻毒素MC-LR的生物去除机制
- 批准号:2025JJ30035
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电子束注入下磁化容性耦合等离子体特性的PIC/MC模拟研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
辣椒斑驳病毒NIa-Pro蛋白抑制寄主基因组DNA 5mC促进病毒侵染的分子机制研究
- 批准号:2025JJ50130
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
不同混合比例MC-PMMA骨水泥对骨质疏松骨折椎体生物力学的有限元研究
- 批准号:2025JJ80755
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电针预防痛转化的外周 MC 数量和 PAR2-PKC
ε活化抑制机制研究
- 批准号:Y24H270057
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ALKBH5 及其介导的 m6A 修饰通过能量代谢调控 MC-LR
暴露所致肝损伤的机制研究
- 批准号:2024JJ6393
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
发酵乳杆菌缓解 MC-LR 所致结肠炎的作用及机制研究
- 批准号:2024JJ6392
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
RNA m6A与DNA 5mC表观修饰crosstalk在牙鲆高温雄性化中的作用机制
- 批准号:42376094
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于5hmc-5mc表观修饰转换探讨TET1/RPL14负调控铁死亡信号轴的缺失参与鼻咽癌恶性进展的机制研究
- 批准号:82360538
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
α-MSH/MC1R信号通路在大鲵发育早期体色形成过程中作用机制的研究
- 批准号:32360914
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
North West Regional College and Gallagher & Mc Kinney Limited KTP 23_24 R1
西北地区学院和加拉格尔
- 批准号:
10070122 - 财政年份:2024
- 资助金额:
$ 85万 - 项目类别:
Knowledge Transfer Partnership
Multicollector isotope mass spectrometer (MC-ICP-MS) with Triple-Quadrupol MS (3Q-ICP-MS)
配备三重四极杆 MS (3Q-ICP-MS) 的多接收同位素质谱仪 (MC-ICP-MS)
- 批准号:
532922468 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Major Research Instrumentation
Multiple Chronic COnditions: MultiPle dAta SouRcEs (MC COMPARE)
多种慢性病:多种数据源(MC COMPARE)
- 批准号:
10726452 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
IL-9-producing MC precursor ancestry and function in Food Allergy
产生 IL-9 的 MC 前体血统及其在食物过敏中的功能
- 批准号:
10790853 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Dating mantle metasomatism: LA‒MC‒ICPMS U‒Pb dating of garnet xenocrysts from the V. Grib kimberlite, Russia
地幔交代作用测年:俄罗斯 V. Grib 金伯利岩石榴石异晶的 LAâMCâICPMS UâPb 测年
- 批准号:
497273650 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Research Grants
Determination of P21 upstream signaling in the toxicity of MC and DMC DNA interstrand crosslinks (Student: Melissa Rosas)
确定 MC 和 DMC DNA 链间交联毒性中的 P21 上游信号传导(学生:Melissa Rosas)
- 批准号:
10377882 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
KM - Composites Research Network for Knowledge Mobilization (CRN-KM) - Réseau de recherché sur les composites pour la mobilisation des connaissance (RRM-MC)
KM - 知识动员复合材料研究网络 (CRN-KM) - 复合材料动员知识研究网络 (RRM-MC)
- 批准号:
533771-2018 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Networks of Centres of Excellence
Differences in RNA expression in response to MC and DMC stereoisomeric interstrandcrosslinks (Student: Christina Gonzalez)
MC 和 DMC 立体异构链间交联反应中 RNA 表达的差异(学生:Christina Gonzalez)
- 批准号:
10378888 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Determination of P21 downstream signaling in the toxicity of MC and DMC DNA interstrand crosslinks (Student: Kameza Harun)
确定 MC 和 DMC DNA 链间交联毒性中的 P21 下游信号传导(学生:Kameza Harun)
- 批准号:
10378838 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Multi-Contrast Chest Radiography (MC-CXR) for COVID-19 Diagnosis and Screening
用于 COVID-19 诊断和筛查的多重对比胸部 X 光检查 (MC-CXR)
- 批准号:
10160566 - 财政年份:2020
- 资助金额:
$ 85万 - 项目类别: