CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors

CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统

基本信息

  • 批准号:
    1566465
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

A growing number of Cyber-Physical Systems (CPS) domains, such as environment, transportation, energy, and disaster response, involve humans in non-trivial ways. Humans act as sensors in these scenarios when they contribute data (either directly or via sensors they own) that a CPS application can use. Using humans as sensors (commonly known as social sensing or crowdsensing) is an emerging paradigm, which provides unprecedented opportunities to sense the physical world in an inexpensive, versatile and scalable manner. However, these benefits are based on the assumption that the human-sensed data are reliable, but this is not always the case. In order for social sensing to become a viable component in CPS feedback loops, there is a critical need to understand the correctness of collected observations from unreliable individuals. This challenge is referred to as reliable social sensing. The objective of this project is to develop a new Reliable Social Sensing Model (RSSM) and system prototype, which enables correct reconstruction of states of physical environment from unreliable human sensors.This project leverages and innovates techniques in estimation theory and CPS to fill a critical gap in the rigorous analysis of human-sensed information, thereby providing a reliable social sensing component to build robust CPS with humans-in-the-loop. This project contains three key components. First, a RSSM will be developed to formally reason about the correctness of collective human observations and accurately assess the quality of analysis results. Second, a new reliable social sensing system prototype will be built to integrate the proposed RSSM with the state-of-the-art data processing techniques to handle different types of human sensed data. Third, by evaluating the proposed model and system through a real world social sensing application, the project will effectively validate the correctness of the RSSM and provide new insights into modeling humans as sensors for future research. The success of the project and follow-up work inspired by it could lead to a paradigm shift in CPS with human-in-the-loop by explicitly incorporating rigorous accuracy assessment into the development of new theories, systems and applications that rely on the collective observations from massive human sensors. The proposal is timely due to the increasing interests in social networks, big data, and human-in-the-loop systems, as well as the proliferation of computing artifacts that interact with or monitor the physical world. This research project will also contribute to the curriculum of CPS and Social Sensing courses, and will engage undergraduate and graduate students in STEM disciplines and from underrepresented groups.
越来越多的网络物理系统(CPS)领域,例如环境,运输,能源和灾难反应,涉及人类以非平凡的方式。 当人类可以使用CPS应用程序可以使用的数据(直接或通过其拥有的传感器)贡献数据时,它们在这些情况下充当传感器。将人类用作传感器(通常称为社交传感或人群)是一种新兴的范式,它提供了以廉价,多功能和可扩展的方式以廉价,多功能和可扩展的方式感知物理世界的前所未有的机会。但是,这些好处是基于以下假设:人类感知数据是可靠的,但并非总是如此。为了使社会感知成为CPS反馈循环中的可行组成部分,迫切需要了解不可靠的个体收集的观察结果。这个挑战称为可靠的社会感知。该项目的目的是开发一种新的可靠的社会传感模型(RSSM)和系统原型,该模型能够从不可靠的人类传感器中正确重建物理环境状态。这项项目的利用和创新技术在估计理论和CPS中的创新技术以填补了对人类敏感信息的严格分析,从而填补了可靠的comments comments-and and and and and and and and and and and comments-and-and-insty构建了comments-and and and and and and and and and consement-lobe。该项目包含三个关键组件。首先,将开发一个RSSM,以正式理解集体人类观察的正确性,并准确评估分析结果的质量。其次,将构建一种新的可靠社会传感系统原型,以将提出的RSSM与最新的数据处理技术集成在一起,以处理不同类型的人类感知数据。第三,通过通过现实世界的社会传感应用来评估所提出的模型和系统,该项目将有效地验证RSSM的正确性,并为将人类作为未来研究的传感器建模提供新的见解。 该项目启发的项目的成功和后续工作可能会通过将严格的精度评估纳入依赖大量人类传感器的集体观察结果的新理论,系统和应用的开发中,从而导致与人类融合的CPS范式转变。该提案及时归因于社交网络,大数据和人类在循环系统以及与物理世界相互作用或监测物理世界相互作用或监测的计算文物的扩散。该研究项目还将为CPS和社会传感课程的课程做出贡献,并将吸引本科生和研究生的STEM学科以及代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Wang其他文献

Regeneration of a neoartery through a completely autologous acellular conduit in a minipig model: a pilot study
在小型猪模型中通过完全自体非细胞导管再生新动脉:一项试点研究
  • DOI:
    10.1186/s12967-018-1763-5
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Tao Wang;Nianguo Dong;Huimin Yan;Sze Yue Wong;Wen Zhao;Kang Xu;Dong Wang;Song Li;Xuefeng Qiu
  • 通讯作者:
    Xuefeng Qiu
Post Synthesis of Aluminum Modified Mesoporous TUD-1 Materials and Their Application for FCC Diesel Hydrodesulfurization Catalysts
铝改性介孔TUD-1材料的后合成及其在FCC柴油加氢脱硫催化剂中的应用
  • DOI:
    10.3390/catal7050141
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zesheng Xia;Jianye Fu;Aijun Duan;Longnian Han;Huadong Wu;Zhen Zhao;Chunming Xu;Dong Wang;Bo Wang;Qian Meng
  • 通讯作者:
    Qian Meng
Real-time robust forecasting-aided state estimation of power system based on data-driven models
基于数据驱动模型的电力系统实时鲁棒预测辅助状态估计
A sandwich-structured ultra-flexible Pva-co-PE/Cu nanofiber composite film with excellent electrical conductivity, electromagnetic shielding properties, and environmental stability
具有优异导电性、电磁屏蔽性能和环境稳定性的三明治结构超柔性Pva-co-PE/Cu纳米纤维复合薄膜
Determination of average times for Brillouin optical time domain analysis sensor denoising by non-local means filtering
通过非局部均值滤波确定布里渊光时域分析传感器去噪的平均时间
  • DOI:
    10.1016/j.optcom.2018.06.002
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jianfeng Zha;Yanjie Meng;Dejun Li;Hejian Yin;Dong Wang;Wenfeng Yu
  • 通讯作者:
    Wenfeng Yu

Dong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Wang', 18)}}的其他基金

FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
  • 批准号:
    2202481
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
  • 批准号:
    2105032
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
  • 批准号:
    2102339
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    2140999
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    2131622
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2130263
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
  • 批准号:
    2008228
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    1845639
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
  • 批准号:
    1831669
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
  • 批准号:
    1637251
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
  • 批准号:
    82303340
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
  • 批准号:
    82300699
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于数字孪生的智能车间CPS混沌预测与控制方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: CPS: Towards Efficient Shared Electric Micromobility: An Interaction-aware Management Framework for Mobile Cyber-Physical Systems
CRII:CPS:迈向高效共享电动微移动:移动网络物理系统的交互感知管理框架
  • 批准号:
    2246080
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards a Model-Based Reinforcement Learning Approach for Safe Operation of Distributed Energy Systems
CRII:CPS:面向分布式能源系统安全运行的基于模型的强化学习方法
  • 批准号:
    1850206
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Optimal Information Gathering in Unknown Stochastic Environments
CRII:CPS:在未知随机环境中实现最佳信息收集
  • 批准号:
    1929571
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Optimal Information Gathering in Unknown Stochastic Environments
CRII:CPS:在未知随机环境中实现最佳信息收集
  • 批准号:
    1566240
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards an Intelligent Low-Altitude UAS Traffic Management System
CRII:CPS:迈向智能低空无人机交通管理系统
  • 批准号:
    1565979
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了