MRA: Resolving the multi-scale drivers of tree mortality from field and remote sensing data on co-located ForestGEO-NEON sites

MRA:通过位于同一地点的 ForestGEO-NEON 站点的实地和遥感数据解决树木死亡的多尺度驱动因素

基本信息

  • 批准号:
    2106015
  • 负责人:
  • 金额:
    $ 100.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Tree mortality is on the rise globally. However, patterns and causes of mortality are poorly understood. Because forests are key locations for terrestrial biodiversity and contribute significantly to terrestrial carbon storage, a better understanding of tree mortality is important. A forest can lose biomass, and thus carbon, quickly through tree death, but typically gain carbon only slowly through growth. Thus, understanding the causes of tree mortality will contribute to a better understanding of carbon cycling. Big disturbances like fires or insect outbreaks can kill many trees at once, but most trees do not die from big disturbances. In contrast, most trees die alone, slowly over years for reasons that are not always obvious. The goal of this work is to determine the rate at which trees are dying annually, and most importantly for what reasons. Using these data tools to better detect future trends in tree mortality and forest dynamics will be built. This information will be conveyed to forest managers, policy makers, and other stakeholders. The data and products from this project will be broadly disseminated and integrated within grade 4-12 education modules. The project will also engage undergraduate researchers in all aspects of the research including introducing them to participants of national and international research networks. Data from two national research networks will be combined to answer questions regarding how, where, and why trees are dying. The researchers will perform annual mortality surveys on tens of thousands of trees at five large-area forest research plots that are part of the Smithsonian Institution’s ForestGEO network (https://forestgeo.si.edu/). All these ForestGEO plots are located on National Ecological Observation Network (NEON) sites (https://www.neonscience.org/) where a suite of ecological data, including air-borne remote sensing, is collected on a regular schedule. Detailed ground-truth data from the ForestGEO plots will be combined with high-resolution hyperspectral and lidar drone-based remote sensing data collected at each site. These data will be used to model causes and factors associated with tree mortality. Using NEON remote sensing data, the model of tree mortality will be upscaled to the NEON domain. Lidar and imagery will be used to identify structural changes in forests that indicate tree death. Models will then be up-scaled further using satellite data collected by NASA to make mortality estimates across the larger landscape. The results of these data collection efforts will advance understanding of tree mortality, the pace of forest change, and the dynamics of terrestrial carbon storage. The project will help advance macrosystems biology by pinpointing how the patterns of tree mortality scale from an individual tree to the entire landscape.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球树木死亡率正在上升。然而,人们对死亡的模式和原因知之甚少。由于森林是陆地生物多样性的关键所在地,并对陆地碳储存作出重大贡献,因此更好地了解树木死亡率非常重要。森林可以通过树木死亡迅速失去生物量,从而失去碳,但通常只能通过生长缓慢获得碳。因此,了解树木死亡的原因将有助于更好地了解碳循环。大的干扰,如火灾或昆虫爆发,可以杀死许多树木一次,但大多数树木不会死于大的干扰。相比之下,大多数树木都是独自死亡,多年来缓慢死亡,原因并不总是显而易见的。这项工作的目标是确定树木每年死亡的速度,最重要的是什么原因。使用这些数据工具,以更好地检测树木死亡率和森林动态的未来趋势将建立。这些信息将传达给森林管理人员、决策者和其他利益攸关方。该项目的数据和产品将广泛传播并整合到4-12年级的教育模块中。 该项目还将吸引本科研究人员参与研究的各个方面,包括将他们介绍给国家和国际研究网络的参与者。来自两个国家研究网络的数据将被结合起来,以回答有关树木如何、在哪里以及为什么死亡的问题。研究人员将对史密森学会ForestGEO网络(https://forestgeo.si.edu/)的五个大面积森林研究地块的数万棵树木进行年度死亡率调查。所有这些ForestGEO地块都位于国家生态观测网络(氖)网站(https://www.Escience.org/)上,定期收集一套生态数据,包括空中遥感。来自森林地球观测组织地块的详细地面实况数据将与在每个站点收集的高分辨率超光谱和激光雷达无人机遥感数据相结合。这些数据将被用来模拟与树木死亡率相关的原因和因素。利用氖遥感数据,树木死亡率模型将升级到氖域。激光雷达和图像将用于识别森林中表明树木死亡的结构变化。然后,模型将使用NASA收集的卫星数据进一步升级,以估计更大范围内的死亡率。这些数据收集工作的结果将促进对树木死亡率、森林变化速度和陆地碳储存动态的了解。该项目将通过精确定位树木死亡率的模式从单个树木到整个景观来帮助推进宏观系统生物学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementing GitHub Actions continuous integration to reduce error rates in ecological data collection
  • DOI:
    10.1111/2041-210x.13982
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Albert Y. Kim;Valentine Herrmann;Ross Bareto;Brian Calkins;E. Gonzalez-Akre;Daniel J. Johnson;Jennifer A. Jordan;L. Magee;I. McGregor;Nicolle Montero;Karl Novak;Teagan Rogers;J. Shue;K. Anderson‐Teixeira
  • 通讯作者:
    Albert Y. Kim;Valentine Herrmann;Ross Bareto;Brian Calkins;E. Gonzalez-Akre;Daniel J. Johnson;Jennifer A. Jordan;L. Magee;I. McGregor;Nicolle Montero;Karl Novak;Teagan Rogers;J. Shue;K. Anderson‐Teixeira
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Johnson其他文献

Re-collecting old media
旧媒体的重新收集
Using fNIRS to Assess Cognitive Activity During Gameplay
使用 fNIRS 评估游戏过程中的认知活动
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madison Klarkowski;M. Causse;Alban Duprès;N. D. Campo;Kellie Vella;Daniel Johnson
  • 通讯作者:
    Daniel Johnson
Search for leptoquark bosons in ep collisions at HERA
在 HERA 的 ep 碰撞中搜索轻夸克玻色子
  • DOI:
    10.1016/j.physletb.2005.09.048
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Adloff;H. Henschel;W. Erdmann;P. Dixon;S. Hurling;V. Dodonov;J. Kroseberg;T. Anthonis;M. Lindstroem;J. Dingfelder;A. Koutov;D. Milstead;D. Traynor;R. Henderson;I. Herynek;B. List;N. Keller;C. Werner;L. Jönsson;J. Zálešák;D. Schmidt;X. Janssen;Y. Sirois;S. Mikocki;P. Laycock;C. Vallée;S. Ferron;A. Mehta;R. Demirchyan;S. Egli;R. Pöschl;J. Ẑáček;H. Schultz;J. Coughlan;K. Gabathuler;N. Delerue;S. Maxfield;I. Sheviakov;A. Vichnevski;V. Panassik;B. Andrieu;R. Horisberger;B. Delcourt;V. Spaskov;M. Schneider;G. Nowak;S. Kermiche;Jun Cao;T. Naumann;M. Kapichine;A. Usik;C. Berger;R. Eichler;L. Shtarkov;L. Janauschek;R. Stamen;G. Patel;K. Meier;R. Heremans;D. South;J. Dowell;V. Tchernyshov;M.A.S. Jones;R. Maraček;H. Bröker;N. Tobien;E. Wünsch;J. Turnau;E. Lobodzinska;F. Schilling;L. Favart;E. Malinovski;R. Gerhards;P. Höting;H. Jung;V. Efremenko;A. Burrage;C. Pascaud;M. Goldberg;M. Ellerbrock;A. Campbell;V. Jemanov;K. Hiller;G. Rädel;G. Winter;G. Heinzelmann;G. Herrera;A. Meyer;J. Kennedy;M. Nedden;E. Eisenhandler;P. Thompson;G. Nellen;V. Nagovizin;W. Braunschweig;Y. Vazdik;P. Meyer;A. Roeck;A. Fedotov;J. Gassner;M. Fleischer;P. Bate;A. Bunyatyan;R. Mohr;B. Lobodzinski;I. Tsurin;D. Hoffmann;D. Meer;B. Heinemann;H. Spitzer;P. Schleper;D. Lamb;K. Daum;J. G. Contreras;F. Keil;R. Roosen;M. Landon;B. Cox;C. Beier;C. Johnson;R. Lahmann;J. Martyniak;D. Kant;D. Wegener;E. Elsen;G. Weber;M. Wobisch;H. Martyn;G. Eckerlin;V. Arkadov;R. Koutouev;H. Krehbiel;E. Perez;D. Pitzl;M. Klein;A. Lebedev;T. Wilksen;M. Davidsson;C. Kleinwort;G. Buschhorn;K. Rybicki;N. Malden;G. Tsipolitis;V. Chekelian;M. Hildebrandt;M. Mondragon;K. Rabbertz;W. Brückner;M. Erdmann;L. Goerlich;T. Greenshaw;Daniel Johnson;K. Müller;S. Kolya;M. Winde;M. Peez;A. Fomenko;J. Bähr;C. Gerlich;J. Phillips;C. Collard;A. Zhokin;J. Morris;A. Babaev;T. Hadig;T. Benisch;M. Hilgers;S. Valkar;P. Baranov;M. Swart;J. Meyer;O. Karschnick;L. Lytkin;P. Smirnov;A. Wyatt;S. Levonian;G. Flügge;T. Kluge;R. Marshall;S. Wiesand;G. Grindhammer;M. Urban;P. Murin;T. Berndt;S. Rusakov;N. Loktionova;J. Ferencei;E. Woehrling;J. Rauschenberger;T. Laštovička;J. Haller;D. Reyna;A. Specka;S. Ghazaryan;P. Reimer;J. Turney;H. Meyer;J. Olsson;F. Cassol;J. Zsembery;G. White;J. Scheins;M. Weber;S. Mohrdieck;C. Duprel;Y. Soloviev;D. Brown;M. Karlsson;V. Lubimov;W. Haynes;R. Felst;I. Kenyon;Y. H. Fleming;C. Issever;J. Hladký;C. Diaconu;B. Koblitz;A. Belousov;S. Schmitt;K. Krüger;E. Gabathuler;A. Astvatsatourov;D. Sankey;L. Hajduk;C. Schwanenberger;D. Ozerov;S. Schmidt;B. Leissner;B. Reisert;P. Faulkner;S. Hengstmann;S. Caron;A. Morozov;T. Nicholls;B. Waugh;S. Tchetchelnitski;R. Wallny;W. Bartel;I. Potachnikova;H. Grässler;P. Mechelen;C. Niebuhr;S. Kotelnikov;G. Knies;T. Kurca;F. Sefkow;E. Tzamariudaki;B. Naroska;V. Korbel;M. Ibbotson;E. Lebailly;E. Wolf;A. Rostovtsev;J. Dainton;V. Schröder;A. Beglarian;M. Tasevsky;D. Bruncko;S. Udluft;J. Gayler;F. Büsser;J. Burger;M. Werner;M. Jacquet;F. Eisele;L. Schoeffel;O. Behnke;S. Luders;T. Kuhr;O. Nix;F. Moreau;N. Gogitidze;T. Schörner;J. Marks;S. Vassiliev;Y. Coppens;J. Stiewe;J. Garvey;L. Bystritskaya;Z. Zhang;B. Clerbaux;J. Bizot;P. Kostka;P. Kjellberg;E. Rizvi;J. Formánek;F. Niebergall;M. Cousinou;U. Straumann;P. Marage;H. Mahlke;J. Cvach;J. Boehme;A. Küpper;M. Jaffré;A. Valkárová;R. Lemrani;N. Werner;G. Franke;V. Lendermann;P. Newman;P. Truoel;V. Andreev;G. Cozzika;D. Haidt;W. Lange;A. Loginov;T. Sloan;G. Thompson;D. Eckstein;A. Schöning;I. Foresti;V. Brisson;B. Stella;T. Mkrtchyan;D. Clarke;B. Povh;C. Wissing;V. Boudry;I. Malinovski;A. Dubak;K. Wacker;W. Dau;J. Becker;E. Barrelet;F. Zomer;C. Risler;D. Lüke;C. Kiesling;C. Grab;J. Naumann;P. Robmann;A. Droutskoi;K. Sedlák
  • 通讯作者:
    K. Sedlák
CT Colonography: Updated
CT 结肠镜检查:更新
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Johnson;M. Macari
  • 通讯作者:
    M. Macari
Study of $B^{-}\to DK^-\pi^+\pi^-$ and $B^-\to D\pi^-\pi^+\pi^-$ decays and determination of the CKM angle $\gamma$
$B^{-} o DK^-pi^ pi^-$ 和 $B^- o Dpi^-pi^ pi^-$ 衰减研究及 CKM 角 $ 的确定
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Aaij;B. Adeva;M. Adinolfi;A. Affolder;Z. Ajaltouni;S. Akar;J. Albrecht;F. Alessio;M. Alexander;S. Ali;G. Alkhazov;P. Cartelle;A. A. Alves;S. Amato;S. Amerio;Y. Amhis;L. An;L. Anderlini;J. Anderson;M. Andreotti;J. Andrews;R. Appleby;O. Gutierrez;F. Archilli;P. d’Argent;A. Artamonov;M. Artuso;E. Aslanides;G. Auriemma;M. Baalouch;S. Bachmann;J. Back;A. Badalov;C. Baesso;W. Baldini;R. Barlow;C. Barschel;S. Barsuk;W. Barter;V. Batozskaya;V. Battista;A. Bay;L. Beaucourt;J. Beddow;F. Bedeschi;I. Bediaga;L. Bel;I. Belyaev;E. Ben;G. Bencivenni;S. Benson;J. Benton;A. Berezhnoy;R. Bernet;A. Bertolin;M. Bettler;M. Beuzekom;A. Bieñ;S. Bifani;T. Bird;A. Birnkraut;A. Bizzeti;T. Blake;F. Blanc;J. Blouw;S. Blusk;V. Bocci;A. Bondar;N. Bondar;W. Bonivento;S. Borghi;M. Borsato;T. Bowcock;E. Bowen;C. Bozzi;S. Braun;D. Brett;M. Britsch;T. Britton;J. Brodzicka;N. Brook;A. Bursche;J. Buytaert;S. Cadeddu;R. Calabrese;M. Calvi;M. C. Gomez;P. Campana;D. Perez;L. Capriotti;A. Carbone;G. Carboni;R. Cardinale;A. Cardini;P. Carniti;L. Carson;K. Akiba;R. Mohr;G. Casse;L. Cassina;L. García;M. Cattaneo;C. Cauet;G. Cavallero;R. Cenci;M. Charles;P. Charpentier;M. Chefdeville;Shanzhen Chen;S. Cheung;N. Chiapolini;M. Chrzaszcz;X. C. Vidal;G. Ciezarek;P. Clarke;M. Clemencic;H. Cliff;J. Closier;V. Coco;J. Cogan;E. Cogneras;V. Cogoni;L. Cojocariu;G. Collazuol;P. Collins;A. Comerma;A. Contu;A. Cook;M. Coombes;S. Coquereau;G. Corti;M. Corvo;B. Couturier;G. Cowan;D. Craik;A. Crocombe;M. C. Torres;S. Cunliffe;R. Currie;C. D’Ambrosio;J. Dalseno;P. David;A. Davis;K. Bruyn;S. Capua;M. Cian;J. Miranda;L. Paula;W. Silva;P. Simone;C. Dean;D. Decamp;M. Deckenhoff;L. Buono;N. Déléage;D. Derkach;O. Deschamps;F. Dettori;B. Dey;A. Canto;F. Ruscio;H. Dijkstra;S. Donleavy;F. Dordei;M. Dorigo;Á. Suárez;D. Dossett;A. Dovbnya;K. Dreimanis;L. Dufour;G. Dujany;F. Dupertuis;P. Durante;R. Dzhelyadin;A. Dziurda;A. Dzyuba;S. Easo;U. Egede;V. Egorychev;S. Eidelman;S. Eisenhardt;U. Eitschberger;R. Ekelhof;L. Eklund;I. Rifai;C. Elsasser;S. Ely;S. Esen;H. Evans;T. Evans;A. Falabella;C. Färber;C. Farinelli;N. Farley;S. Farry;R. Fay;D. Ferguson;V. F. Albor;F. Ferrari;F. Rodrigues;M. Ferro;Sergey Filippov;M. Fiore;M. Fiorini;M. Firlej;C. Fitzpatrick;T. Fiutowski;K. Fohl;P. Fol;M. Fontana;F. Fontanelli;R. Forty;O. Francisco;M. Frank;C. Frei;M. Frosini;J. Fu;E. Furfaro;A. G. Torreira;D. Galli;S. Gallorini;S. Gambetta;M. Gandelman;P. Gandini;Y. Gao;J. G. Pardiñas;J. Garofoli;J. G. Ticó;L. Garrido;D. Gascón;C. Gaspar;U. Gastaldi;R. Gauld;L. Gavardi;G. Gazzoni;A. Geraci;D. Gerick;E. Gersabeck;M. Gersabeck;T. Gershon;P. Ghez;A. Gianelle;S. Gianì;V. Gibson;O. Girard;L. Giubega;V. Gligorov;C. Göbel;D. Golubkov;A. Golutvin;A. Gomes;C. Gotti;M. Gándara;R. G. Diaz;L. Cardoso;E. Grauges;E. Graverini;G. Graziani;A. Grecu;E. Greening;S. Gregson;P. Griffith;L. Grillo;O. Grünberg;B. Gui;E. Gushchin;Y. Guz;T. Gys;C. Hadjivasiliou;G. Haefeli;C. Haen;S. Haines;S. Hall;B. Hamilton;T. Hampson;Xiaoxue Han;S. Hansmann;N. Harnew;S. Harnew;J. Harrison;J. He;T. Head;V. Heijne;K. Hennessy;P. Henrard;L. Henry;J. A. H. Morata;E. Herwijnen;M. Heß;A. Hicheur;D. Hill;P. H. Hopchev;P. H. Hopchev;W. Hulsbergen;T. Humair;N. Hussain;D. Hutchcroft;D. Hynds;M. Idzik;P. Ilten;R. Jacobsson;A. Jaeger;J. Jalocha;E. Jans;A. Jawahery;F. Jing;M. John;Daniel Johnson;C. Jones;C. Joram;B. Jost;N. Jurik;S. Kandybei;W. Kanso;M. Karacson;T. M. Karbach;S. Karodia;M. Kelsey;I. Kenyon;M. Kenzie;T. Ketel;B. Khanji;C. Khurewathanakul;S. Klaver;K. Klimaszewski;O. Kochebina;M. Kolpin;I. Komarov;R. Koopman;P. Koppenburg;M. Korolev;L. Kravchuk;K. Kreplin;M. Kreps;G. Krocker;P. Krokovny;F. Kruse;W. Kucewicz;M. Kucharczyk;V. Kudryavtsev;A. Kuonen;K. Kurek;T. Kvaratskheliya;V. Thi;D. Lacarrere;G. Lafferty;A. Lai;D. Lambert;R. Lambert;G. Lanfranchi;C. Langenbruch;B. Langhans;T. Latham;C. Lazzeroni;R. Gac;J. Leerdam;J. Lees;R. Lefèvre;A. Leflat;J. Lefrancois;O. Leroy;T. Lesiak;B. Leverington;Yongjian Li;T. Likhomanenko;M. Liles;R. Lindner;C. Linn;F. Lionetto;Bingxuan Liu;Xiang Liu;S. Lohn;I. Longstaff;J. Lopes;D. Lucchesi;M. Martinez;H. Luo;A. Lupato;E. Luppi;O. Lupton;F. Machefert;F. Maciuc;O. Maev;K. Maguire;S. Malde;A. Malinin;G. Manca;G. Mancinelli;P. Manning;A. Mapelli;J. Maratas;J. Marchand;U. Marconi;C. Benito;P. Marino;R. Märki;J. Marks;G. Martellotti;M. Martinelli;D. M. Santos;F. M. Vidal;D. M. Tostes;A. Massafferri;R. Matev;A. Mathad;Z. Máthé;C. Matteuzzi;K. Matthieu;A. Mauri;B. Maurin;A. Mazurov;M. McCann;J. McCarthy;A. McNab;R. McNulty;B. Meadows;F. Meier;M. Meissner;M. Merk;D. Milanes;M. Minard;D. Mitzel;J. M. Rodriguez;S. Monteil;M. Morandin;P. Morawski;A. Mordà;M. Morello;J. Moroń;A. Morris;R. Mountain;F. Muheim;J. Müller;K. Müller;V. Müller;M. Mussini;B. Muster;P. Naik;T. Nakada;R. Nandakumar;I. Nasteva;M. Needham;N. Neri;S. Neubert;N. Neufeld;M. Neuner;A. Nguyen;T. Nguyen;C. Nguyen;V. Niess;R. Niet;N. Nikitin;T. Nikodem;D. Ninci;A. Novoselov;D. O’Hanlon;A. Oblakowska;V. Obraztsov;S. Ogilvy;O. Okhrimenko;R. Oldeman;C. Onderwater;B. O. Rodrigues;J. Goicochea;A. Otto;P. Owen;A. Oyanguren;A. Palano;F. Palombo;M. Palutan;J. Panman;A. Papanestis;M. Pappagallo;L. Pappalardo;C. Parkes;G. Passaleva;G. Patel;M. Patel;C. Patrignani;A. Pearce;A. Pellegrino;G. Penso;M. Altarelli;S. Perazzini;P. Perret;L. Pescatore;K. Petridis;A. Petrolini;M. Petruzzo;E. Olloqui;B. Pietrzyk;T. Pilař;D. Pinci;A. Pistone;A. Piucci;S. Playfer;M. P. Casasus;T. Poikela;F. Polci;A. Poluektov;I. Polyakov;E. Polycarpo;A. Popov;D. Popov;B. Popovici;C. Potterat;E. Price;J. Price;J. Prisciandaro;A. Pritchard;C. Prouve;V. Pugatch;A. Navarro;G. Punzi;W. Qian;R. Quagliani;B. Rachwal;J. Rademacker;B. Rakotomiaramanana;M. Rama;M. Rangel;I. Raniuk;N. Rauschmayr;G. Raven;F. Redi;S. Reichert;M. Reid;A. Reis;S. Ricciardi;S. Richards;M. Rihl;K. Rinnert;V. Molina;P. Robbe;A. Rodrigues;E. Rodrigues;J. Lopez;P. Pérez;S. Roiser;V. Romanovsky;A. Vidal;M. Rotondo;J. Rouvinet;T. Ruf;H. Ruiz;P. Valls;J. J. S. Silva;N. Sagidova;P. Sail;B. Saitta;V. Guimaraes;C. S. Mayordomo;B. S. Sedes;R. Santacesaria;C. S. Rios;M. Santimaria;E. Santovetti;A. Sarti;C. Satriano;A. Satta;D. Saunders;D. Savrina;M. Schiller;H. Schindler;M. Schlupp;M. Schmelling;T. Schmelzer;B. Schmidt;O. Schneider;A. Schopper;M. Schubiger;M. Schune;R. Schwemmer;B. Sciascia;A. Sciubba;A. Semennikov;I. Sepp;N. Serra;J. Serrano;L. Sestini;P. Seyfert;M. Shapkin;I. Shapoval;Y. Shcheglov;T. Shears;L. Shekhtman;V. Shevchenko;A. Shires;R. Coutinho;G. Simi;M. Sirendi;N. Skidmore;I. Skillicorn;T. Skwarnicki;E. Smith;I. Smith;John Smith;Mark E. Smith;H. Snoek;M. Sokoloff;F. Soler;F. Soomro;D. Souza;B. Paula;B. Spaan;P. Spradlin;S. Sridharan;F. Stagni;M. Stahl;S. Stahl;O. Steinkamp;O. Stenyakin;F. Sterpka;S. Stevenson;S. Stoica;S. Stone;B. Storaci;S. Stracka;M. Straticiuc;U. Straumann;Liang Sun;W. Sutcliffe;K. Swientek;S. Swientek;V. Syropoulos;M. Szczekowski;P. Szczypka;T. Szumlak;S. T’Jampens;T. Tekampe;M. Teklishyn;G. Tellarini;F. Teubert;C. Thomas;E. Thomas;J. Tilburg;V. Tisserand;M. Tobin;J. Todd;S. Tolk;L. Tomassetti;D. Tonelli;S. Topp;N. Torr;E. Tournefier;S. Tourneur;K. Trabelsi;M. Tran;M. Tresch;A. Trisovic;A. Tsaregorodtsev;P. Tsopelas;N. Tuning;A. Ukleja;Andrey Ustyuzhanin;U. Uwer;C. Vacca;V. Vagnoni;G. Valenti;A. Vallier;R. V. Gomez;P. Regueiro;C. Sierra;S. Vecchi;J. Velthuis;M. Veltri;G. Veneziano;M. Vesterinen;B. Viaud;D. Vieira;M. V. Diaz;X. Vilasís;A. Vollhardt;D. Volyanskyy;D. Voong;A. Vorobyev;V. Vorobyev;C. Voß;J. Vries;R. Waldi;C. Wallace;R. Wallace;J. Walsh;S. Wandernoth;J. Wang;D. Ward;N. Watson;D. Websdale;A. Weiden;M. Whitehead;D. Wiedner;G. Wilkinson;M. Wilkinson;M. Williams;M. Williams;T. Williams;F. Wilson;J. Wimberley;J. Wishahi;W. Wiślicki;M. Witek;G. Wormser;S. Wotton;S. Wright;K. Wyllie;Y. Xie;Z. Xu;Z. Yang;Jiesheng Yu;X. Yuan;O. Yushchenko;M. Zangoli;M. Zavertyaev;L. Zhang;Y. Zhang;A. Zhelezov;A. Zhokhov;L. Zhong
  • 通讯作者:
    L. Zhong

Daniel Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Johnson', 18)}}的其他基金

Dark New Physics
黑暗新物理
  • 批准号:
    ST/W004305/1
  • 财政年份:
    2023
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Fellowship
Collaborative Research: Quantifying the amount and functional significance of long-term stored-water in trees
合作研究:量化树木长期储存水的数量和功能意义
  • 批准号:
    2027593
  • 财政年份:
    2020
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Conifer leaf anatomy determines hydraulic functioning
合作研究:针叶树叶解剖结构决定水力功能
  • 批准号:
    1852976
  • 财政年份:
    2018
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conifer leaf anatomy determines hydraulic functioning
合作研究:针叶树叶解剖结构决定水力功能
  • 批准号:
    1656731
  • 财政年份:
    2017
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Continuing Grant
Meeting: Reconciling Methodological Discrepancies in the Measurement of Hydraulic Vulnerability to Embolism: August 13-21, 2016 Berkeley, CA & August 6-11, 2017 Portland, OR
会议:协调液压栓塞脆弱性测量的方法差异:2016 年 8 月 13 日至 21 日加利福尼亚州伯克利
  • 批准号:
    1637194
  • 财政年份:
    2016
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: What are the Mechanisms of Tree Recovery after an Extreme Episodic Drought?
RAPID:合作研究:极端偶发性干旱后树木恢复的机制是什么?
  • 批准号:
    1549971
  • 财政年份:
    2015
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: How do seedlings survive? Hydraulics, carbon acquisition and drought tolerance in the earliest phases of tree growth
合作研究:幼苗如何存活?
  • 批准号:
    1462486
  • 财政年份:
    2014
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: How do seedlings survive? Hydraulics, carbon acquisition and drought tolerance in the earliest phases of tree growth
合作研究:幼苗如何存活?
  • 批准号:
    1146746
  • 财政年份:
    2012
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Continuing Grant
Characterizing an Active Magma Chamber at South Sister Volcano, Oregon: Constraints From Gravity and GPS Measurements
描述俄勒冈州南姐妹火山活跃岩浆室的特征:来自重力和 GPS 测量的限制
  • 批准号:
    0208490
  • 财政年份:
    2002
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
Scientific Visit to Plan Research on Climatic Variability as it Relates to Water Resources in Spain
对西班牙与水资源相关的气候变化计划研究的科学访问
  • 批准号:
    8518482
  • 财政年份:
    1986
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Resolving multi-scale ecological consequences of thermal refuges amidst climate warming
职业:解决气候变暖过程中避难所的多尺度生态后果
  • 批准号:
    2236526
  • 财政年份:
    2023
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Continuing Grant
Interplay of the HIV-1 Env cytoplasmic tail, Gag-MA, and membrane: resolving molecular detail and blocking assembly
HIV-1 Env 胞质尾部、Gag-MA 和膜的相互作用:解析分子细节并阻断组装
  • 批准号:
    10772333
  • 财政年份:
    2023
  • 资助金额:
    $ 100.58万
  • 项目类别:
Resolving differences between clinical opioids at single neurons
解决临床阿片类药物在单个神经元上的差异
  • 批准号:
    10355433
  • 财政年份:
    2021
  • 资助金额:
    $ 100.58万
  • 项目类别:
EAR-PF: Resolving the multi-scale hydraulics of shallow overland flows on patchily-vegetated hillslopes: towards a simple predictive framework
EAR-PF:解决植被斑驳的山坡上浅层陆流的多尺度水力学问题:建立一个简单的预测框架
  • 批准号:
    1952651
  • 财政年份:
    2020
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Fellowship Award
HIGH-FIDELITY EDDY-RESOLVING SIMULATIONS ON MULTI-CORE ACCELERATORS FOR MULTI-PHASE FLOWS IN CHEMICAL, ENERGY & TRANSPORT
化学、能源领域多相流多核加速器的高保真涡旋解析仿真
  • 批准号:
    EP/T01380X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Research Grant
Resolving Mesoproterozoic supercontinent configuration with an integrated multi-tool approach to sedimentary provenance analysis
通过沉积物源分析的综合多工具方法解析中元古代超大陆构造
  • 批准号:
    1951905
  • 财政年份:
    2020
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
Resolving the Fates of Multiple Triplet Excitons in Single Multi-Chromophoric Conjugated Organic molecules
解决单个多发色团共轭有机分子中多个三重态激子的命运
  • 批准号:
    1904943
  • 财政年份:
    2019
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
Resolving multi-scale mixing processes and their impacts using a twin tow-yo microstructure profiling system
使用双拖曳微观结构分析系统解决多尺度混合过程及其影响
  • 批准号:
    19H01965
  • 财政年份:
    2019
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
III: Small: Towards Resolving Ad-hoc Concept Queries with Table Answers via Multi-source Data Mining
III:小:通过多源数据挖掘解决带有表答案的临时概念查询
  • 批准号:
    1815674
  • 财政年份:
    2018
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Standard Grant
RePriCo: Resolving Multi-party Privacy Conflicts in Social Media
RePriCo:解决社交媒体中的多方隐私冲突
  • 批准号:
    EP/M027805/2
  • 财政年份:
    2017
  • 资助金额:
    $ 100.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了