Stochastic Optimal Control with High Dimensional Data
高维数据的随机最优控制
基本信息
- 批准号:2106462
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal control has been a central tool in many groundbreaking technological advances starting with the moon-landing problem to recent developments in machine learning. Impressive advances in the training of neural networks now allow for further exciting complex and realistic applications. This project aims to leverage these modern optimization techniques to build an almost data-driven theory and to reduce the potentially catastrophic model risk that was prevalent in the recent financial crisis. Additionally, as machine learning methodology is becoming the dominant paradigm in many industries, education on these topics is vital to the economy of the nation. Towards this goal, students from all levels will be integrated into this research providing them with well-rounded training on these omnipresent computational practices. Technically, several classes of problems will be investigated in-depth to highlight and resolve different difficulties that the general theory faces. The main study will be a general high-level analysis of recent numerical experiments based on the efficient training of deep neural networks. Optimal control of McKean-Vlasov jump-diffusions will be analyzed to provide a concrete setting. These problems are naturally set in the infinite-dimensional Wasserstein-type spaces and pose many interesting questions, including the construction of high-dimensional but tractable approximations. Similar questions also arise in optimal transport problems related to optimization with model uncertainty and risk management problems in quantitative finance with many underlying risk factors, and they have broad applicability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最优控制一直是许多突破性技术进步的核心工具,从登月问题到机器学习的最新发展。神经网络训练的令人印象深刻的进步现在允许进一步令人兴奋的复杂和现实的应用。该项目旨在利用这些现代优化技术来建立一个几乎数据驱动的理论,并减少在最近的金融危机中普遍存在的潜在灾难性模型风险。此外,随着机器学习方法成为许多行业的主导范式,这些主题的教育对国家经济至关重要。为了实现这一目标,来自各个层次的学生将被整合到这项研究中,为他们提供关于这些无所不在的计算实践的全面培训。从技术上讲,将深入研究几类问题,以突出和解决一般理论面临的不同困难。主要研究将是基于深度神经网络的有效训练对最近的数值实验进行一般性的高级分析。McKean-Vlasov跳跃扩散的最优控制将被分析以提供具体的设置。这些问题自然地设置在无限维Wasserstein型空间,并提出了许多有趣的问题,包括高维但易于处理的近似的建设。类似的问题也出现在与模型不确定性相关的最优化问题和具有许多潜在风险因素的定量金融中的风险管理问题中,并且它们具有广泛的适用性。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Halil Soner其他文献
Halil Soner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Halil Soner', 18)}}的其他基金
Mathematical Sciences: Nonlinear Partial Differential Equations and Their Applications to Evolving Surfaces, Phase Transitions and Stochastic Control
数学科学:非线性偏微分方程及其在演化表面、相变和随机控制中的应用
- 批准号:
9500940 - 财政年份:1995
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations with Maximum Principle and Their Applications to Optimal Control and Phase Transitions
数学科学:具有极大值原理的非线性偏微分方程及其在最优控制和相变中的应用
- 批准号:
9200801 - 财政年份:1992
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations in Optimal Control and Probability
数学科学:最优控制和概率中的非线性偏微分方程
- 批准号:
9002249 - 财政年份:1990
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
相似海外基金
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control in mathematical finance
数学金融中的随机最优控制
- 批准号:
RGPIN-2018-03978 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Optimal Control of Unmanned Aerial Vehicles Against Cyber Attacks in the Presence of Uncertainty
存在不确定性的情况下无人机抵御网络攻击的随机最优控制
- 批准号:
21K14351 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic optimal control in mathematical finance
数学金融中的随机最优控制
- 批准号:
RGPIN-2018-03978 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic control and optimal stopping models for risk management
风险管理的随机控制和最优停止模型
- 批准号:
2431337 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Studentship
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Collaborative Research and Development Grants
A study of plasma-material atomistic-scale interactions based on stochastic theory and optimal control of material properties
基于随机理论和材料性能优化控制的等离子体-材料原子尺度相互作用研究
- 批准号:
20J22727 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows