Novel Challenges in Nonlinear Waves and Integrable Systems

非线性波和可积系统的新挑战

基本信息

  • 批准号:
    2106488
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This research concerns nonlinear wave phenomena, with particular emphasis on the study of a class of nonlinear evolution equations commonly referred to as soliton equations or integrable systems. These systems model physical phenomena in diverse fields such as deep-water waves, plasma physics, nonlinear optical fibers, low temperature physics and Bose-Einstein condensates, and magneto-static spin waves. Some of the equations studied belong to the class of the nonlinear Schrödinger (NLS) equation and its various generalizations, which constitute universal models for weakly dispersive nonlinear wave trains. Others belong to the complex short-pulse equation and its generalizations, which describe the propagation in nonlinear media of ultra-short optical pulses. These have applications to laser material processing, laser microscopy, optical clocks and measurements, medicine (e.g., eye surgery and vision correction), and telecommunication. A distinguishing feature of these systems is that, in addition to standard solitons, localized traveling waves that preserve their shape and velocity, they also admit so-called loop solitons, which are not single-valued solitons, as well as solutions that oscillate between the two. Another phenomenon that this research aims at elucidating is the formation of rogue waves. These extreme events are unusually large surface waves with wave crests up to four times the mean level that appear from nowhere and disappear without a trace and can therefore cause significant damage to ships, and offshore drilling units. This research addresses the role of solitons and modulational instability as possible concurrent mechanisms for the formation of rogue waves. Rogue waves have also been recently observed experimentally in optical fibers. The training of graduate students at the University at Buffalo, and outreach activities aiming at promoting the growth of women in applied mathematics will be integral components of this project. At a more technical level, the investigation deals with certain integrable systems in situations in which the boundary conditions play a key role, as well as various kinds of singular limits. Specific tasks include: (i) the development of the inverse scattering transform for various NLS systems with non-zero boundary conditions at infinity, and in particular with boundary conditions corresponding to counter-propagating waves; (ii) the investigation of concrete questions from applications in Bose-Einstein condensates (e.g., trains of solitons, bound states, windings) and in nonlinear optics (nematic liquid crystals, etc); (iii) the rigorous study of the discrete spectrum and spectral singularities of NLS systems; (iv) development of the inverse scattering transform for the complex coupled short-pulse equation; (v) the investigation of solitons, soliton interactions and rogue waves for the above systems, and applications to non-integrable systems in regimes close to the integrable ones; and (vi) the study of phase transitions in networks as critical behavior of solutions of soliton equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究关注非线性波动现象,特别着重于研究一类通常被称为孤子方程或可积系统的非线性演化方程。这些系统模拟了不同领域的物理现象,如深水波、等离子体物理、非线性光纤、低温物理和玻色-爱因斯坦凝聚以及静磁自旋波。研究的一些方程属于非线性薛定谔(NLS)方程及其各种推广,它们构成了弱色散非线性波列的通用模型。另一些则属于描述超短光脉冲在非线性介质中传输的复短脉冲方程及其推广。这些应用于激光材料加工、激光显微镜、光学时钟和测量、医学(例如,眼科手术和视力矫正)和电信。这些系统的一个显着特征是,除了标准孤子,保持其形状和速度的局域行波,它们还允许所谓的环路孤子,这不是单值孤子,以及在两者之间振荡的解决方案。本研究旨在阐明的另一种现象是流氓波的形成。这些极端事件是异常大的表面波,波峰高达平均水平的四倍,不知从哪里出现,消失得无影无踪,因此可能对船舶和海上钻井装置造成重大损害。这项研究解决了孤立子和调制不稳定性的作用,作为可能的并发机制的流氓波的形成。最近还在光纤中通过实验观察到了流氓波。在布法罗大学培训研究生以及旨在促进妇女在应用数学方面的发展的推广活动将是这个项目的组成部分。 在更技术的层面上,调查涉及某些可积系统的情况下,边界条件发挥了关键作用,以及各种奇异极限。具体任务包括:(i)在无穷远处具有非零边界条件的各种NLS系统的逆散射变换的发展,特别是具有对应于反向传播波的边界条件的NLS系统的逆散射变换的发展;(ii)在玻色-爱因斯坦凝聚中应用的具体问题的研究(例如,孤子串,束缚态,绕组)和非线性光学(iii)对非线性光学系统的离散谱和谱奇异性的严格研究:(iv)发展了复耦合短脉冲方程的逆散射变换;(v)对上述系统的孤子、孤子相互作用和反常波的研究,以及在接近于可积系统的区域中对不可积系统的应用;和(vi)网络中的相变作为孤立子方程解的临界行为的研究。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse Scattering Transform for the Defocusing Manakov System with Non-Parallel Boundary Conditions at Infinity
  • DOI:
    10.4208/eajam.261021.230122
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Asela Abeya;G. Biondini;B. Prinari
  • 通讯作者:
    Asela Abeya;G. Biondini;B. Prinari
Theoretical and numerical evidence for the potential realization of the Peregrine soliton in repulsive two-component Bose-Einstein condensates
  • DOI:
    10.1103/physreva.105.053306
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    A. Romero-Ros;G. Katsimiga;S. Mistakidis;B. Prinari;G. Biondini;P. Schmelcher;P. Kevrekidis
  • 通讯作者:
    A. Romero-Ros;G. Katsimiga;S. Mistakidis;B. Prinari;G. Biondini;P. Schmelcher;P. Kevrekidis
Soliton interactions and Yang–Baxter maps for the complex coupled short‐pulse equation
  • DOI:
    10.1111/sapm.12580
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    V. Caudrelier;Aikaterini Gkogkou;B. Prinari
  • 通讯作者:
    V. Caudrelier;Aikaterini Gkogkou;B. Prinari
Solitons and soliton interactions in repulsive spinor Bose–Einstein condensates with nonzero background
  • DOI:
    10.1140/epjp/s13360-021-02050-2
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asela Abeya;B. Prinari;G. Biondini;P. Kevrekidis
  • 通讯作者:
    Asela Abeya;B. Prinari;G. Biondini;P. Kevrekidis
Manakov system with parity symmetry on nonzero background and associated boundary value problems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Prinari其他文献

Mathematical modeling of quality in a medical structure: A case study
医疗结构质量的数学建模:案例研究
  • DOI:
    10.1016/j.mcm.2011.05.017
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. L. Schiavo;Barbara Prinari;Angelo Vincenzo Serio
  • 通讯作者:
    Angelo Vincenzo Serio

Barbara Prinari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Prinari', 18)}}的其他基金

Collaborative research RUI: Integrable systems, inverse scattering and applications
合作研究 RUI:可积系统、逆散射和应用
  • 批准号:
    1614601
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative research RUI: Nonlinear wave equations and inverse scattering
合作研究 RUI:非线性波动方程和逆散射
  • 批准号:
    1311883
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: Dynamics of Soliton Interactions and Applications
协作研究 RUI:孤子相互作用的动力学和应用
  • 批准号:
    1009248
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

“渝车出海”的原产地规则挑战与应对策略研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新时期上海市药具管理面临的问题、挑战与对策研究
  • 批准号:
    2025HP47
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
跨层级的对齐挑战:企业相互竞争价值观的整体差异效应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    面上项目
财富科技的监管挑战与监管设计:算法投资视角的研究
  • 批准号:
    72303197
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
情感挑战数字表征模式挖掘与分析
  • 批准号:
    62302494
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
SMR#3841 高维统计分析研究的机遇和挑战
  • 批准号:
    12381240133
  • 批准年份:
    2023
  • 资助金额:
    2.00 万元
  • 项目类别:
    国际(地区)合作研究与交流项目
专题研讨类:超快化学面临的挑战和新机遇
  • 批准号:
    22342007
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
随机驾驶行为下基于强化学习与启发式融合的自动驾驶挑战场景生成
  • 批准号:
    52302504
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
  • 批准号:
    1637473
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
  • 批准号:
    1600414
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
  • 批准号:
    1500707
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Computational and Analytical Challenges in Nonlinear Dispersive Wave Equations
非线性色散波动方程的计算和分析挑战
  • 批准号:
    1409018
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDE
合作研究:非线性双曲偏微分方程的基本挑战
  • 批准号:
    1311353
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDEs
合作研究:非线性双曲偏微分方程的基本挑战
  • 批准号:
    1311743
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
  • 批准号:
    1254446
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
  • 批准号:
    1201443
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
  • 批准号:
    1100754
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了