New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
基本信息
- 批准号:1201443
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project deals with research at the interface of harmonic analysis, nonlinear partial differential equations, geometry, and probability. On the one hand, it is concerned with the study of dispersive nonlinear wave phenomena from a nondeterministic viewpoint. In the last two decades enormous progress has been made in settling questions on existence of solutions to dispersive equations, their long-time behavior, and singularity formation. The thrust of this body of work has focused primarily on deterministic aspects of wave phenomena, where sophisticated tools from nonlinear Fourier analysis, geometry, and analytic number theory have played crucial roles. Yet there remain some fundamental obstacles. A natural approach to overcome them is to consider evolution equations from a nondeterministic point of view and to incorporate into the analysis tools from probability. Some of the issues to be investigated in this project are the role of randomization in the well-posedness theory, the almost sure (in the sense of probability) global-in-time existence of solutions, the existence and dynamical properties of associated Gibbs measures, and the behavior of statistical ensembles under gauge transformations. On the other hand, the principal investigator will study the existence and long-time dynamics of special types of solutions to certain hyperbolic (or nonelliptic) nonlinear Schrodinger equations and systems. The aim is to develop a rigorous mathematical analysis of models arising in connection with the theory of vortex filaments, ferromagnetism, and current work in nonlinear optics (e.g., examining the evolution of optical pulses in normally dispersive optical media), models that have attracted the attention of the physics community. Wave phenomena in physics such as light, sound, and gravity are mathematically modeled using partial differential equations. Nonlinear wave models arise in quantum mechanics, ferromagnetism, vibrating systems, semiconductors, and optical fibers. Dispersive equations model important wave propagation phenomena in nature. Their solutions are waves that spread out in space as time evolves while conserving energy or mass. The best known dispersive equations are the nonlinear Schrodinger equations that govern the motion of quantum particles (e.g., electrons), the macroscopic dynamics of the Bose-Einstein condensate, and signals in fiber optics. This project focuses on the rigorous mathematical analysis of dispersive equations that arise naturally in physics and engineering. The synergy of Fourier analysis, probability, geometry, and analytic number theory provides a well-adapted and powerful toolbox to study the nonlinear effects that allow waves to interact and produce new, modified propagation patterns. The problems that the principal investigator will study are of particular interest in the study of long internal gravity waves in deep stratified fluids, the theory of vortex filaments and aerodynamics, and in current work on nonlinear fiber optics that is of fundamental importance in today's telecommunication systems and internet traffic. The ubiquitous role of mathematics is to lay the foundations through rigorous research for the best predictions, based on which the technological advances and engineering applications we enjoy every day, can be efficiently enabled. The training of students and junior researchers is an integral part of the project.
这个项目涉及调和分析,非线性偏微分方程,几何和概率的接口研究。 一方面,它涉及从非确定性的观点来研究色散非线性波动现象。在过去的二十年里,在解决色散方程解的存在性、长时间行为和奇异性形成等问题方面取得了巨大的进展。这部分工作的重点主要集中在波动现象的确定性方面,非线性傅立叶分析、几何学和解析数论的复杂工具发挥了至关重要的作用。然而,仍然存在一些根本性的障碍。克服这些问题的一个自然方法是从非确定性的角度考虑演化方程,并从概率的角度将其纳入分析工具。在这个项目中要研究的一些问题是随机化在适定性理论中的作用,几乎肯定(在概率意义上)解的时间全局存在性,相关吉布斯测度的存在性和动力学性质,以及规范变换下统计系综的行为。另一方面,首席研究员将研究某些双曲(或非椭圆)非线性薛定谔方程和系统的特殊类型解的存在性和长时间动力学。其目的是发展一个严格的数学分析模型所产生的理论与涡丝,铁磁性,目前的工作在非线性光学(例如,研究光脉冲在正常色散光学介质中的演化),这些模型已经引起了物理学界的关注。 物理学中的波动现象,如光、声和重力,都是用偏微分方程来数学建模的。非线性波模型出现在量子力学、铁磁性、振动系统、半导体和光纤中。色散方程模拟了自然界中重要的波传播现象。他们的解决方案是在能量或质量守恒的情况下,随着时间的推移在空间中传播的波。最著名的色散方程是控制量子粒子运动的非线性薛定谔方程(例如,电子),玻色-爱因斯坦凝聚体的宏观动力学,以及光纤中的信号。该项目侧重于对物理和工程中自然出现的色散方程进行严格的数学分析。傅立叶分析,概率论,几何学和解析数论的协同作用提供了一个适应良好的和强大的工具箱来研究非线性效应,使波相互作用,并产生新的,修改的传播模式。主要研究人员将研究的问题是在深层分层流体中长内部重力波的研究,涡丝理论和空气动力学,以及在当前的非线性光纤工作中特别感兴趣,这在今天的电信系统和互联网流量中具有根本的重要性。数学无处不在的作用是通过严格的研究为最佳预测奠定基础,在此基础上,我们每天享受的技术进步和工程应用可以有效地实现。学生和初级研究人员的培训是该项目的一个组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Nahmod其他文献
Andrea Nahmod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Nahmod', 18)}}的其他基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
- 批准号:
2101381 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052740 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463714 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
- 批准号:
0803160 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
- 批准号:
0503542 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
- 批准号:
0202139 - 财政年份:2002
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9971159 - 财政年份:1999
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
“渝车出海”的原产地规则挑战与应对策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新时期上海市药具管理面临的问题、挑战与对策研究
- 批准号:2025HP47
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
跨层级的对齐挑战:企业相互竞争价值观的整体差异效应研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
财富科技的监管挑战与监管设计:算法投资视角的研究
- 批准号:72303197
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
情感挑战数字表征模式挖掘与分析
- 批准号:62302494
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SMR#3841 高维统计分析研究的机遇和挑战
- 批准号:12381240133
- 批准年份:2023
- 资助金额:2.00 万元
- 项目类别:国际(地区)合作研究与交流项目
专题研讨类:超快化学面临的挑战和新机遇
- 批准号:22342007
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
随机驾驶行为下基于强化学习与启发式融合的自动驾驶挑战场景生成
- 批准号:52302504
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Novel Challenges in Nonlinear Waves and Integrable Systems
非线性波和可积系统的新挑战
- 批准号:
2106488 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
- 批准号:
1637473 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
- 批准号:
1600414 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Computational and Analytical Challenges in Nonlinear Dispersive Wave Equations
非线性色散波动方程的计算和分析挑战
- 批准号:
1409018 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDE
合作研究:非线性双曲偏微分方程的基本挑战
- 批准号:
1311353 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDEs
合作研究:非线性双曲偏微分方程的基本挑战
- 批准号:
1311743 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
- 批准号:
1254446 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
- 批准号:
1100754 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant