III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
基本信息
- 批准号:2107172
- 负责人:
- 金额:$ 119.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious disease outbreaks, such as the novel coronavirus disease (COVID-19) pandemic, entailed localized conditions with evolution in time and space present a daunting task for policy and decision makers in finding optimal non-pharmaceutical intervention (NPI) strategies at different scales that balance epidemiological benefits and socioeconomic costs. To help tackle this challenging problem, by harnessing the data revolution and advancing capabilities of artificial intelligence (AI), this multidisciplinary project aims to design and develop a data-driven and AI-augmented framework that is tailored to the evolving localized conditions and enables expert-in-the-loop for adaptive NPIs to effectively respond to the dynamics of epidemic while balancing the multidimensional socioeconomic impacts. The proposed work will not only benefit local and federal governments, regional communities, corporations, societal leaders and the public by assisting with effective responses to the public health issues while mitigating negative socioeconomic impacts and various induced crises, but will also facilitate the development of robust science-based decision support systems responding to future natural or man-made disasters. The research will be beneficial to multidisciplinary areas, including data science, machine learning, epidemiology, economics, social and behavioral sciences. The outcomes (e.g., open-source code, data, and models) will be made publicly accessible and broadly distributed through publications, media presses, etc. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at underrepresented groups.To combat infectious disease outbreaks with robust response planning, this project includes four interconnected research components to develop an intelligent and interactive decision support framework that allows in silico exploration of extensive possible NPIs prior to the potential field implementation phase. First, the team will develop a novel spatial-temporal heterogeneous graph model to abstract dynamics of harnessed multi-source data. Second, the team will develop new techniques to learn node (i.e., area) representations over the constructed graph by integrating both spatial and temporal dependencies while preserving the heterogeneity. Third, based on the learned node representations, given a set of NPIs, the team will design and develop an innovative NPI-aware multi-head transformer for multi-task prediction (i.e., forecasting epidemic dynamics and associated socioeconomic impacts). Fourth, based on the predictions, the team will develop a novel multi-agent reinforcement learning model with inverse reward learning to enable expert-in-the-loop in finding optimal sequential NPIs that balance epidemiological benefits and socioeconomic costs under certain constraints and objectives set by policy and decision makers. The research will advance the field of information integration and informatics through the development of a series of original works including novel deep graph learning techniques with the context of heterogeneous and dynamic graph structures, which will also provide foundational work for addressing similar challenges for future natural or man-made disasters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型冠状病毒病(COVID-19)等传染病爆发需要局部条件,并随着时间和空间的演变而演变,这对政策制定者和决策者来说是一项艰巨的任务,他们需要在不同规模上找到最佳的非药物干预(NPI)策略,以平衡流行病学效益和社会经济成本。为了帮助解决这一具有挑战性的问题,通过利用数据革命和推进人工智能(AI)的能力,这个多学科项目旨在设计和开发一个数据驱动和人工智能增强的框架,该框架针对不断变化的本地条件,并使专家在环自适应NPI能够有效地应对流行病的动态,同时平衡多维社会经济影响。拟议的工作不仅将有利于地方和联邦政府、区域社区、公司、社会领袖和公众,协助有效应对公共卫生问题,同时减轻负面的社会经济影响和各种诱发的危机,而且还将促进发展强大的基于科学的决策支持系统,以应对未来的自然或人为灾害。该研究将有利于多学科领域,包括数据科学,机器学习,流行病学,经济学,社会和行为科学。结果(例如,开放源代码、数据和模型)将通过出版物、媒体出版物等向公众开放并广泛传播。该项目将把研究与教育结合起来,包括新课程开发、学生辅导、专业培训和劳动力发展,以及针对代表性不足群体的K-12外展活动。为了通过强有力的应对规划来应对传染病爆发,该项目包括四个相互关联的研究部分,以开发一个智能和交互式决策支持框架,该框架允许在潜在的现场实施阶段之前对广泛的可能的NPI进行计算机探索。首先,该团队将开发一种新的时空异构图模型,以抽象所利用的多源数据的动态。其次,该团队将开发新的技术来学习节点(即,区域)表示,同时保持异质性。第三,基于学习到的节点表示,给定一组NPI,团队将设计和开发一种创新的NPI感知多头Transformer,用于多任务预测(即,预测流行病动态和相关的社会经济影响)。第四,基于预测,该团队将开发一种具有反向奖励学习的新型多智能体强化学习模型,以使专家能够找到最佳的连续NPI,在政策和决策者设定的某些限制和目标下平衡流行病学效益和社会经济成本。该研究将通过一系列原创作品的开发推进信息集成和信息学领域,包括在异构和动态图结构的背景下的新型深度图学习技术,这也将为解决未来自然或人类面临的类似挑战提供基础性工作-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial
- DOI:
10.1186/s12916-025-03985-4 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.300
- 作者:
Yaofei Jiang;Weixin Bei;Lin Wang;Nian Lu;Cheng Xu;Hu Liang;Liangru Ke;Yanfang Ye;Shuiqing He;Shuhui Dong;Qin Liu;Chuanrun Zhang;Xuguang Wang;Weixiong Xia;Chong Zhao;Ying Huang;Yanqun Xiang;Guoying Liu - 通讯作者:
Guoying Liu
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
- DOI:
10.1007/s10115-020-01472-1 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.7
- 作者:
张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞 - 通讯作者:
王声瑞
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
- 批准号:
2209814 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2140785 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
相似国自然基金
数据驱动多介质协同碳纳米管负载过渡
族金属化合物选择性去除新污染物
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于数据驱动的硅胶基电介质复合材料可控制备及强韧化机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于高铁地震数据的地下介质结构反演与成像方法研究
- 批准号:42374153
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于VTI介质的页岩油藏模型、数据双驱动AVO反演方法研究
- 批准号:42304131
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数据驱动和物理约束的多孔介质传输问题建模
- 批准号:12271408
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
数据与模型联合驱动的复杂介质高维弹性波全波形反演
- 批准号:12261021
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
物理和数据混合驱动的黏弹性介质纯P波最小二乘逆时偏移方法
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
粘弹各向异性煤层介质槽波响应机制及其高精度数据处理方法
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
基于各向异性介质的三维地面和井中可控源电磁法数据联合反演研究
- 批准号:42004053
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于LAMOST和GAIA数据的近邻恒星形成区主序前星和年轻星协的搜寻
- 批准号:12003045
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
- 批准号:
2312561 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312863 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2341725 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant