III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
基本信息
- 批准号:2107172
- 负责人:
- 金额:$ 119.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious disease outbreaks, such as the novel coronavirus disease (COVID-19) pandemic, entailed localized conditions with evolution in time and space present a daunting task for policy and decision makers in finding optimal non-pharmaceutical intervention (NPI) strategies at different scales that balance epidemiological benefits and socioeconomic costs. To help tackle this challenging problem, by harnessing the data revolution and advancing capabilities of artificial intelligence (AI), this multidisciplinary project aims to design and develop a data-driven and AI-augmented framework that is tailored to the evolving localized conditions and enables expert-in-the-loop for adaptive NPIs to effectively respond to the dynamics of epidemic while balancing the multidimensional socioeconomic impacts. The proposed work will not only benefit local and federal governments, regional communities, corporations, societal leaders and the public by assisting with effective responses to the public health issues while mitigating negative socioeconomic impacts and various induced crises, but will also facilitate the development of robust science-based decision support systems responding to future natural or man-made disasters. The research will be beneficial to multidisciplinary areas, including data science, machine learning, epidemiology, economics, social and behavioral sciences. The outcomes (e.g., open-source code, data, and models) will be made publicly accessible and broadly distributed through publications, media presses, etc. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at underrepresented groups.To combat infectious disease outbreaks with robust response planning, this project includes four interconnected research components to develop an intelligent and interactive decision support framework that allows in silico exploration of extensive possible NPIs prior to the potential field implementation phase. First, the team will develop a novel spatial-temporal heterogeneous graph model to abstract dynamics of harnessed multi-source data. Second, the team will develop new techniques to learn node (i.e., area) representations over the constructed graph by integrating both spatial and temporal dependencies while preserving the heterogeneity. Third, based on the learned node representations, given a set of NPIs, the team will design and develop an innovative NPI-aware multi-head transformer for multi-task prediction (i.e., forecasting epidemic dynamics and associated socioeconomic impacts). Fourth, based on the predictions, the team will develop a novel multi-agent reinforcement learning model with inverse reward learning to enable expert-in-the-loop in finding optimal sequential NPIs that balance epidemiological benefits and socioeconomic costs under certain constraints and objectives set by policy and decision makers. The research will advance the field of information integration and informatics through the development of a series of original works including novel deep graph learning techniques with the context of heterogeneous and dynamic graph structures, which will also provide foundational work for addressing similar challenges for future natural or man-made disasters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传染病爆发,例如新型冠状病毒疾病(Covid-19)大流行,需要随时间和空间的进化而进行局部条件,这为政策和决策者提供了一项艰巨的任务,目的是在寻找最佳的非药物干预(NPI)策略,以不同的规模平衡流行性的效益和社会经济经济成本。通过利用数据革命并提高人工智能(AI)的能力来帮助解决这个具有挑战性的问题,这个多学科项目旨在设计和开发一个由数据驱动的和A-Aigment的框架,该框架量身定制,该框架量身定制,该框架是为了不断发展的本地化条件而定制的,并能够使专家的npis启用适应性的npis,以有效地响应跨性别的竞争性,而跨越了跨越跨越跨越跨越跨越跨越的竞争。拟议的工作不仅将使地方和联邦政府,区域社区,公司,社会领导人和公众受益,同时有效地应对公共卫生问题,同时减轻负面的社会经济影响和各种诱发危机,而且还将促进基于强大的科学支持系统对未来自然灾难做出反应的良好科学支持系统的发展。这项研究将对多学科领域有益,包括数据科学,机器学习,流行病学,经济学,社会和行为科学。 The outcomes (e.g., open-source code, data, and models) will be made publicly accessible and broadly distributed through publications, media presses, etc. This project will integrate research with education, including novel curriculum development, student mentoring, professional training and workforce development, and K-12 outreach activities aimed at underrepresented groups.To combat infectious disease outbreaks with robust response planning, this project includes four interconnected research components to develop一个智能和互动的决策支持框架,可以在潜在的现场实施阶段之前对大量可能的NPI进行计算机探索。首先,该团队将开发一种新型的时空异质图模型,以抽象利用多源数据的动态。其次,团队将通过在保留异质性的同时集成空间和时间依赖性来开发新技术来通过构造图来学习节点(即区域)表示。第三,基于学到的节点表示,鉴于一组NPI,该团队将设计和开发一种创新的NPI感知的多头变压器,以进行多任务预测(即预测流行性动力学和相关的社会经济影响)。第四,根据预测,团队将开发一种具有逆奖励学习的新型多项式增强学习模型,以使专家在寻找最佳的顺序NPI,以平衡在政策和决策者设定的某些限制和目标下,平衡流行病学利益和社会经济成本。这项研究将通过开发一系列原创作品,包括新颖的深图学习技术,并具有异构和动态的图形结构,这还将为解决未来的自然或人工灾难的类似挑战提供基本工作,以解决NSF的法定任务,并通过评估范围的范围,这是针对未来的自然或人工制造的奖项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
- DOI:
10.1007/s10115-020-01472-1 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.7
- 作者:
张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞 - 通讯作者:
王声瑞
Soter: Smart Bracelets for Children's Safety
Soter:保护儿童安全的智能手环
- DOI:
10.1145/2700483 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yanfang Ye;Tao Li;Haiyin Shen - 通讯作者:
Haiyin Shen
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
- 批准号:
2209814 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2140785 - 财政年份:2021
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 119.24万 - 项目类别:
Standard Grant