EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
基本信息
- 批准号:2209814
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The coronavirus disease (COVID-19) pandemic has exposed a critical set of vulnerabilities that have impacted community resilience in responding to escalating societal, economic, and behavioral issues. Unfortunately, there are no established solutions or proven models for us to depend on to tackle the complex challenges with significant uncertainties and unknowns. This project engages novel disciplinary perspectives to help address the devastating effects caused by COVID-19, i.e., leveraging the extracted information of experiences, ideas and support from positive-energy communities who are successfully navigating threats that can be transformed and transferred into actionable information to assist vulnerable communities to cope, progress and move forward. More specifically, by advancing artificial intelligence (AI) innovations, the goal of this project is to design and develop an AI-driven paradigm for collective and collaborative community resilience in responses to a variety of crises and exposed vulnerabilities in the COVID-19 era and beyond. With additional validation, this research will provide foundation to assist the federal and state governments, corporations, societal leaders to develop and implement strategies that will guide local and regional communities, and the nation into a successful new normal future.This exploratory yet transformative high risk-high payoff work that involves radically different approaches will have three main research components. First, the research team will construct a novel attributed heterogeneous information network (AHIN) to comprehensively model the up-to-date multi-source pandemic related data for abstract representation. Second, to understand how users interact and how information are propagated within and cross-community in social media, the team will develop an innovative nonnegative matrix factorization regularized deep graph learning model for community detection in the AHIN by considering the heterogeneity of the network. Third, the team will propose an integrated adversarial disentangler to separate the distinct, informative factors of variations hidden in the milieu to learn post embeddings for emotion and topic analysis for community classification and framing, and thus to derive supportive and constructive information for community resilience improvement. The developed AI-driven paradigm in this project will provide in-depth insights and customized guidance that can help public health experts, social workers, law enforcement, economists, and policy makers in decision-making and also enable a conceptual framework for the development of resilient community engagement strategies in responses to a variety of crises created by COVID-19 and future natural or health-related disasters. The research will be beneficial to multidisciplinary areas, including data mining, machine learning, epidemiology, economics, social and behavioral sciences. The outcomes of this project will be made publicly accessible and broadly distributed. The project will integrate research with education through curriculum development, the participation of underrepresented groups, and student mentoring activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冠状病毒病(COVID-19)大流行暴露了一系列关键的脆弱性,影响了社区应对不断升级的社会、经济和行为问题的复原力。不幸的是,我们没有既定的解决方案或经过验证的模型来应对具有重大不确定性和未知因素的复杂挑战。该项目采用新颖的学科视角,以帮助解决COVID-19造成的破坏性影响,即,利用从正能量社区中提取的经验、想法和支持信息,这些社区正在成功地应对威胁,这些威胁可以转化为可采取行动的信息,以帮助弱势社区科普、进步和向前迈进。更具体地说,通过推进人工智能(AI)创新,该项目的目标是设计和开发一个人工智能驱动的模式,以应对COVID-19时代及以后的各种危机和暴露的漏洞。通过进一步的验证,这项研究将为帮助联邦和州政府、企业、社会领导人制定和实施战略提供基础,这些战略将指导地方和区域社区以及国家进入一个成功的新常态未来。这项探索性但具有变革性的高风险高回报的工作,涉及截然不同的方法,将有三个主要的研究组成部分。首先,研究团队将构建一个新的属性异构信息网络(AHIN),以全面建模最新的多源流行病相关数据,以进行抽象表示。其次,为了了解用户如何交互以及信息如何在社交媒体中在社区内和跨社区传播,该团队将通过考虑网络的异质性,开发一种创新的非负矩阵分解正则化深度图学习模型,用于AHIN中的社区检测。第三,该团队将提出一个综合的对抗性解缠器,以分离隐藏在环境中的差异的独特的信息因素,以学习用于社区分类和框架的情感和主题分析的后嵌入,从而获得支持性和建设性的信息,以提高社区的韧性。该项目中开发的人工智能驱动范式将提供深入的见解和定制的指导,可以帮助公共卫生专家,社会工作者,执法人员,经济学家和政策制定者进行决策,并为制定弹性社区参与战略提供概念框架,以应对COVID-19造成的各种危机和未来的自然或健康相关灾害。该研究将有利于多学科领域,包括数据挖掘,机器学习,流行病学,经济学,社会和行为科学。该项目的成果将向公众开放并广泛分发。该项目将通过课程开发、代表性不足的群体的参与和学生辅导活动将研究与教育结合起来。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adapting Distilled Knowledge for Few-Shot Relation Reasoning over Knowledge Graphs
采用蒸馏知识进行知识图上的少样本关系推理
- DOI:10.1137/1.9781611977172.75
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Yiming;Qian, Yiyue;Ye, Yanfang;Zhang, Chuxu
- 通讯作者:Zhang, Chuxu
Back-Propagating System Dependency Impact for Attack Investigation
攻击调查的反向传播系统依赖性影响
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fang, Pengcheng;Gao, Peng;Liu, Changlin;Ayday, Erman;Jee, Kangkook;Wang, Ting;Ye, Yanfang;Liu, Zhuotao;Xiao, Xusheng
- 通讯作者:Xiao, Xusheng
Rep2Vec: Repository Embedding via Heterogeneous Graph Adversarial Contrastive Learning
- DOI:10.1145/3534678.3539324
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Y. Qian;Yiming Zhang;Qianlong Wen;Yanfang Ye;Chuxu Zhang
- 通讯作者:Y. Qian;Yiming Zhang;Qianlong Wen;Yanfang Ye;Chuxu Zhang
Co-Modality Graph Contrastive Learning for Imbalanced Node Classification
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Y. Qian;Chunhui Zhang;Yiming Zhang;Qianlong Wen;Yanfang Ye;Chuxu Zhang
- 通讯作者:Y. Qian;Chunhui Zhang;Yiming Zhang;Qianlong Wen;Yanfang Ye;Chuxu Zhang
Summarizing Source Code from Structure and Context
- DOI:10.1109/ijcnn55064.2022.9892013
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Shifu Hou;Lingwei Chen;Yanfang Ye
- 通讯作者:Shifu Hou;Lingwei Chen;Yanfang Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial
- DOI:
10.1186/s12916-025-03985-4 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.300
- 作者:
Yaofei Jiang;Weixin Bei;Lin Wang;Nian Lu;Cheng Xu;Hu Liang;Liangru Ke;Yanfang Ye;Shuiqing He;Shuhui Dong;Qin Liu;Chuanrun Zhang;Xuguang Wang;Weixiong Xia;Chong Zhao;Ying Huang;Yanqun Xiang;Guoying Liu - 通讯作者:
Guoying Liu
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
- DOI:
10.1007/s10115-020-01472-1 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.7
- 作者:
张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞 - 通讯作者:
王声瑞
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2107172 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2140785 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Early Career Researcher Award
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
An innovative, AI-driven application that helps users assess/action information pollution for social media content.
一款创新的人工智能驱动应用程序,可帮助用户评估/消除社交媒体内容的信息污染。
- 批准号:
10100049 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
- 批准号:
10101171 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Launchpad
AI-Driven Methodologies for Automating Operations in 5G/6G Networks
用于 5G/6G 网络中自动化操作的人工智能驱动方法
- 批准号:
2903756 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
- 批准号:
2339678 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Intersubjective AI-driven multimodal interaction for advanced user-centric human robot collaborative applications (Jarvis)
主体间人工智能驱动的多模式交互,用于以用户为中心的高级人类机器人协作应用程序 (Jarvis)
- 批准号:
10099311 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Enhanced AI-driven risk-engine for world’s first open-banking credit-builder debit card
增强型人工智能驱动的风险引擎,用于全球首张开放银行信用建设借记卡
- 批准号:
10097739 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D