Several Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的几个基本问题
基本信息
- 批准号:2108453
- 负责人:
- 金额:$ 29.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hyperbolic balance laws arise in the modeling of the nonlinear motion of fluid flows. The extremely complicated structure of this class of systems is a source of many open questions with practical implications in a broad class of scientific and engineering models. This research will focus on several fundamental questions, with the goal of bringing fresh insights and developing new tools to break ground in the field. The project aims to enhance understanding of these complicated but important phenomena. In addition to its scientific goals, this project aims to foster international collaborations and train graduate students and young researchers.The research project follows three main themes. The first is to look for sharp conditions for the global existence of smooth solutions to compressible, non-isentropic, Euler equations in one dimension with large initial data, and to continue the effort of deriving a sharp density lower bound estimate for generic large solutions. The second is to characterize the passage of singular limits in the isentropic approximation process for both inviscid and viscous fluids, and to derive error estimates in such approximations. The last is to establish the mathematically rigorous validity of nonlinear dynamical Rayleigh-Taylor type instability in compressible fluids subject to gravity, in particular for the compressible Navier-Stokes-Fourier system, where heat transfer plays an essential role. These research activities aim to break ground in several fields where theories are lacking, pave roads in areas that are outside current methodology, and advance understanding of the behavior of solutions in nonlinear hyperbolic balance laws.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在模拟流体的非线性运动时,会出现双曲线平衡定律。这类系统的极其复杂的结构是许多公开问题的来源,这些问题在广泛的科学和工程模型中具有实际意义。这项研究将集中在几个基本问题上,目的是带来新的见解和开发新的工具,以在该领域取得突破。该项目旨在加强对这些复杂但重要的现象的了解。除了科学目标,该项目还旨在促进国际合作,培养研究生和年轻研究人员。该研究项目遵循三个主要主题。第一种方法是寻找一维可压缩非等熵欧拉方程在大初始数据下整体光滑解存在的精确条件,并继续得到一般大解的一个精确的密度下界估计。二是刻画无粘流体和粘性流体等熵近似过程中奇异极限的通过,并导出此类近似中的误差估计。最后,建立了受重力作用的可压缩流体中非线性动力Rayleigh-Taylor不稳定性的严格数学正确性,特别是对于可压缩的Navier-Stokes-Fourier系统,其中换热起着至关重要的作用。这些研究活动旨在在缺乏理论的几个领域取得突破,在当前方法之外的领域铺平道路,并增进对非线性双曲平衡定律中解的行为的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decay estimates of solutions to the compressible micropolar fluids system in R3
- DOI:10.1016/j.jde.2021.05.038
- 发表时间:2021-08
- 期刊:
- 影响因子:2.4
- 作者:Leilei Tong;R. Pan;Zhong Tan
- 通讯作者:Leilei Tong;R. Pan;Zhong Tan
Stability and instability of the 3D incompressible viscous flow in a bounded domain
- DOI:10.1007/s00526-022-02205-8
- 发表时间:2022-03
- 期刊:
- 影响因子:2.1
- 作者:Fucai Li;R. Pan;Zhipeng Zhang
- 通讯作者:Fucai Li;R. Pan;Zhipeng Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronghua Pan其他文献
Global smooth solutions in R3 to short wave-long wave interactions systems for viscous magnetohydrodynamic fluids
R3 中粘性磁流体动力流体短波-长波相互作用系统的全局平滑解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
HermanoFrid;Junxiong Jia;Ronghua Pan - 通讯作者:
Ronghua Pan
Antigen recognition
抗原识别
- DOI:
10.1016/s0952-7915(96)80115-4 - 发表时间:
1996 - 期刊:
- 影响因子:7
- 作者:
Qiuyun She;Ying;Dong Li;Ran An;Ting Zhou;Xiaoqi Nie;Ronghua Pan;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-004-0349-y - 发表时间:
2005-02-26 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Pierangelo Marcati;Ronghua Pan - 通讯作者:
Ronghua Pan
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo
循环外泌体 miR-493-3p 通过调节节段型白癜风表皮多巴胺浓度影响黑素细胞存活和功能
- DOI:
10.1016/j.jid.2022.05.1086 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Dong Li;Ting Zhou;Qiuyun She;Xiaoqi Nie;Zhong Liu;Ronghua Pan;Yujia Wei;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence Rate for Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-002-0234-5 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Ronghua Pan - 通讯作者:
Ronghua Pan
Ronghua Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronghua Pan', 18)}}的其他基金
Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的基本问题
- 批准号:
1813603 - 财政年份:2018
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Large and Multi-Dimensional Solutions to Hyperbolic Balance Laws
双曲平衡定律的大型多维解
- 批准号:
1516415 - 财政年份:2015
- 资助金额:
$ 29.88万 - 项目类别:
Continuing Grant
Large and Multi-Dimensional Solutions of Hyperbolic Balance Laws with Dissipation
带耗散的双曲平衡定律的大型多维解
- 批准号:
1108994 - 财政年份:2011
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Large and multidimensional solutions of hyperbolic balance laws
双曲平衡定律的大型多维解
- 批准号:
0807406 - 财政年份:2008
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Long Time Behaviors of Large Solutions of Hyperbolic Balance Laws
双曲平衡定律大解的长期行为
- 批准号:
0505515 - 财政年份:2005
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
相似海外基金
Exploring Synchrotron Dendrochemistry: Answering fundamental questions
探索同步加速器树状化学:回答基本问题
- 批准号:
575412-2022 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
AF: Small: Fundamental Questions in Communication and Computation Regarding Edit Type String Measures
AF:小:有关编辑类型字符串测量的通信和计算的基本问题
- 批准号:
2127575 - 财政年份:2021
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Collaborative Research: A Big Data Approach to Fundamental Paleoclimate Questions
合作研究:解决基本古气候问题的大数据方法
- 批准号:
2002556 - 财政年份:2020
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Collaborative Research: A Big Data Approach to Fundamental Paleoclimate Questions
合作研究:解决基本古气候问题的大数据方法
- 批准号:
2002518 - 财政年份:2020
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Collaborative Research: A Big Data Approach to Fundamental Paleoclimate Questions
合作研究:解决基本古气候问题的大数据方法
- 批准号:
2002558 - 财政年份:2020
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的基本问题
- 批准号:
1813603 - 财政年份:2018
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Developing novel technologies to address fundamental questions about second messenger signaling
开发新技术来解决有关第二信使信号传导的基本问题
- 批准号:
9296950 - 财政年份:2017
- 资助金额:
$ 29.88万 - 项目类别:
Fundamental Questions in Theory of Algebraic and Kac-Moody Groups
代数和 Kac-Moody 群理论的基本问题
- 批准号:
1789943 - 财政年份:2016
- 资助金额:
$ 29.88万 - 项目类别:
Studentship
Fundamental questions in behavior observation: Amount and overlap of information, sequence effects and perceiver-induced consistency
行为观察的基本问题:信息的数量和重叠、序列效应和感知者引起的一致性
- 批准号:
273683842 - 财政年份:2015
- 资助金额:
$ 29.88万 - 项目类别:
Research Grants
Transforming fundamental biological questions about cell membranes into quantitative experiments using model and cell systems
使用模型和细胞系统将有关细胞膜的基本生物学问题转化为定量实验
- 批准号:
1402059 - 财政年份:2014
- 资助金额:
$ 29.88万 - 项目类别:
Continuing Grant