Large and Multi-Dimensional Solutions of Hyperbolic Balance Laws with Dissipation
带耗散的双曲平衡定律的大型多维解
基本信息
- 批准号:1108994
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of large and/or multi-dimensional solutions to dissipative balance laws arising in modeling of flows, including gases, fluids, traffics, and semi-conductor devices. The research focuses on the following particular objects: a) global behavior of compressible Navier-Stokes equations in one and several space dimensions, b) vanishing viscosity limit from compressible Navier-Stokes equations toward Euler equations with physical viscosity coefficient, c) global stability or instability of relaxation system, d) global BV theory for a class of dissipative balance laws, and e) large time behavior for certain fluid dynamics systems including viscous Boussinesq system in two dimension and compressible Navier-Stokes equations in two and three dimensions. The goals of this project are developing novel analytic approaches to constructing large solutions, investigating singular behavior of the solutions, identifying global stability criterion, understanding the large time behavior of multi-dimensional solutions.The objective of this research is to investigate several open problems for dissipative hyperbolic balance laws. Hyperbolic balance laws are important nonlinear partial differential equations modeling the motion of fluids, gas, and waves. The research will concentrate on problems for large solutions, strong waves, and realistic models in multiple spatial dimensions. These situations often involve complicated but interesting phenomena resulting from nonlinearity and resonance and thus underdeveloped. The results are expected to have applications to dynamics of compressible fluids, elastic material mechanics, traffic control systems, semi-conductor devices modeling, porous medium flows, and geophysical dynamics. The advance of mathematical understanding of these problems plays important role in the design of effective numerical schemes for scientific computation in these fundamental areas. The project will also provide education and training to students and young researchers in this challenging field.
该项目致力于研究大的和/或多维的解决方案,以耗散平衡定律产生的流动建模,包括气体,流体,交通,和半导体器件。研究的重点是以下具体对象:a)一维和多维可压缩Navier-Stokes方程的整体性态,B)粘性极限从可压缩Navier-Stokes方程向具有物理粘性系数的Euler方程消失,c)松弛系统的整体稳定性或不稳定性,d)一类耗散平衡律的整体BV理论,(5)二维粘性Boussinesq方程组和二维、三维可压缩Navier-Stokes方程组的大时间行为。本项目的目标是发展新的分析方法来构造大解,研究解的奇异性,识别全局稳定性准则,理解多维解的大时间行为,本研究的目的是研究耗散双曲平衡律的几个公开问题。双曲平衡定律是模拟流体、气体和波浪运动的重要非线性偏微分方程。该研究将集中在多个空间维度的大型解决方案,强波和现实模型的问题。这些情况往往涉及复杂的,但有趣的现象所造成的非线性和共振,因此欠发达。研究结果有望应用于可压缩流体动力学、弹性材料力学、交通控制系统、半导体器件建模、多孔介质流动和地球物理动力学。这些问题的数学理解的进步起着重要的作用,在这些基本领域的科学计算有效的数值方案的设计。该项目还将在这一具有挑战性的领域为学生和青年研究人员提供教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronghua Pan其他文献
Global smooth solutions in R3 to short wave-long wave interactions systems for viscous magnetohydrodynamic fluids
R3 中粘性磁流体动力流体短波-长波相互作用系统的全局平滑解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
HermanoFrid;Junxiong Jia;Ronghua Pan - 通讯作者:
Ronghua Pan
Antigen recognition
抗原识别
- DOI:
10.1016/s0952-7915(96)80115-4 - 发表时间:
1996 - 期刊:
- 影响因子:7
- 作者:
Qiuyun She;Ying;Dong Li;Ran An;Ting Zhou;Xiaoqi Nie;Ronghua Pan;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-004-0349-y - 发表时间:
2005-02-26 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Pierangelo Marcati;Ronghua Pan - 通讯作者:
Ronghua Pan
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo
循环外泌体 miR-493-3p 通过调节节段型白癜风表皮多巴胺浓度影响黑素细胞存活和功能
- DOI:
10.1016/j.jid.2022.05.1086 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Dong Li;Ting Zhou;Qiuyun She;Xiaoqi Nie;Zhong Liu;Ronghua Pan;Yujia Wei;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence Rate for Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-002-0234-5 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Ronghua Pan - 通讯作者:
Ronghua Pan
Ronghua Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronghua Pan', 18)}}的其他基金
Several Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的几个基本问题
- 批准号:
2108453 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的基本问题
- 批准号:
1813603 - 财政年份:2018
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Large and Multi-Dimensional Solutions to Hyperbolic Balance Laws
双曲平衡定律的大型多维解
- 批准号:
1516415 - 财政年份:2015
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Large and multidimensional solutions of hyperbolic balance laws
双曲平衡定律的大型多维解
- 批准号:
0807406 - 财政年份:2008
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Long Time Behaviors of Large Solutions of Hyperbolic Balance Laws
双曲平衡定律大解的长期行为
- 批准号:
0505515 - 财政年份:2005
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916349 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916395 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Efficient processing of large scale multi-dimensional graphs
大规模多维图的高效处理
- 批准号:
DP180103096 - 财政年份:2018
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Projects
Multi-dimensional Analysis and Management for Large and Various Data
海量、多样的数据多维度分析与管理
- 批准号:
18K18056 - 财政年份:2018
- 资助金额:
$ 18.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust control system design of large-scale dynamical systems based on multi-dimensional hierarchical network modeling
基于多维层次网络建模的大型动力系统鲁棒控制系统设计
- 批准号:
17K06487 - 财政年份:2017
- 资助金额:
$ 18.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large and Multi-Dimensional Solutions to Hyperbolic Balance Laws
双曲平衡定律的大型多维解
- 批准号:
1516415 - 财政年份:2015
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Large-Scale Location Mining for Multi-dimensional Risk Factors Discovery: A study for Road Accident Prevention
大规模位置挖掘多维度风险因素发现:道路事故预防研究
- 批准号:
26540166 - 财政年份:2014
- 资助金额:
$ 18.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Computation of Large-Scale, Multi-Dimensional Sparse Optimization Problems
大规模、多维稀疏优化问题的计算
- 批准号:
1317602 - 财政年份:2013
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Estimation of large scale three dimensional structure of plant communities by combining multi platform lidar and SAR
多平台激光雷达与SAR相结合估计植物群落大尺度三维结构
- 批准号:
25292154 - 财政年份:2013
- 资助金额:
$ 18.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modeling Multi-dimensional Large Strain Consolidation of Tailings
尾矿多维大应变固结建模
- 批准号:
394955-2009 - 财政年份:2011
- 资助金额:
$ 18.3万 - 项目类别:
Industrial Postgraduate Scholarships














{{item.name}}会员




