Large and multidimensional solutions of hyperbolic balance laws
双曲平衡定律的大型多维解
基本信息
- 批准号:0807406
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates three research topics in hyperbolic balance law with dissipation. First, we plan to establish the large time behavior and the stability of elementary waves for general physical dissipative systems, including Euler equations with damping, Euler equations with relaxation, and Euler-Poisson systems in one dimension. Previous results are available for the small smooth solutions; the proposed research will concentrate on problems for large solutions and strong waves. Second, we intend to establish BV theory for a class of dissipative hyperbolic balance laws including damped p-system, p-system with relaxation, and Euler-Poisson equations. Last, we will study the three dimensional compressible Euler equations with damping with initial data near a planar diffusive wave or on a bounded domain. The results of the research will lead to a better understanding of the behavior of basic equations in nonlinear hyperbolic PDEs. The object of this research is to investigate several open problems for dissipative hyperbolic balance laws. Hyperbolic balance laws are important partial differential equations modeling the motion of fluids, gas, and waves. The research will concentrate on problems for large solutions, strong waves, and realistic models in multiple spatial dimensions. These situations often involve complicated but interesting phenomena resulting from nonlinearity and resonance. The results are expected to have application to dynamics of compressible fluids, elastic material mechanics, traffic control systems, semi-conductor devices modeling, porous medium flows, and geophysical dynamics. The proposed research will be helpful in the design of effective numerical schemes for scientific computation.
本课题探讨了带耗散的双曲平衡律的三个研究课题。首先,我们计划建立一般物理耗散系统的大时间行为和基本波的稳定性,包括带阻尼的欧拉方程、带松弛的欧拉方程和一维欧拉-泊松系统。先前的结果适用于小光滑解;建议的研究将集中在大溶液和强波问题上。其次,我们打算建立一类耗散双曲平衡律的BV理论,包括阻尼p系统、松弛p系统和欧拉-泊松方程。最后,我们将研究在平面扩散波附近或有界域上初始数据具有阻尼的三维可压缩欧拉方程。研究结果将有助于更好地理解非线性双曲偏微分方程中基本方程的行为。本研究的目的是探讨耗散双曲平衡律的几个开放问题。双曲平衡定律是模拟流体、气体和波浪运动的重要偏微分方程。研究将集中在大解问题、强波问题和多空间维度的现实模型问题上。这些情况往往涉及由非线性和共振引起的复杂而有趣的现象。研究结果有望应用于可压缩流体动力学、弹性材料力学、交通控制系统、半导体器件建模、多孔介质流动和地球物理动力学。本文的研究将有助于设计有效的数值格式进行科学计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronghua Pan其他文献
Global smooth solutions in R3 to short wave-long wave interactions systems for viscous magnetohydrodynamic fluids
R3 中粘性磁流体动力流体短波-长波相互作用系统的全局平滑解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
HermanoFrid;Junxiong Jia;Ronghua Pan - 通讯作者:
Ronghua Pan
Antigen recognition
抗原识别
- DOI:
10.1016/s0952-7915(96)80115-4 - 发表时间:
1996 - 期刊:
- 影响因子:7
- 作者:
Qiuyun She;Ying;Dong Li;Ran An;Ting Zhou;Xiaoqi Nie;Ronghua Pan;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-004-0349-y - 发表时间:
2005-02-26 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Pierangelo Marcati;Ronghua Pan - 通讯作者:
Ronghua Pan
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo
循环外泌体 miR-493-3p 通过调节节段型白癜风表皮多巴胺浓度影响黑素细胞存活和功能
- DOI:
10.1016/j.jid.2022.05.1086 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Dong Li;Ting Zhou;Qiuyun She;Xiaoqi Nie;Zhong Liu;Ronghua Pan;Yujia Wei;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence Rate for Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-002-0234-5 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Ronghua Pan - 通讯作者:
Ronghua Pan
Ronghua Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronghua Pan', 18)}}的其他基金
Several Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的几个基本问题
- 批准号:
2108453 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的基本问题
- 批准号:
1813603 - 财政年份:2018
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Large and Multi-Dimensional Solutions to Hyperbolic Balance Laws
双曲平衡定律的大型多维解
- 批准号:
1516415 - 财政年份:2015
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Large and Multi-Dimensional Solutions of Hyperbolic Balance Laws with Dissipation
带耗散的双曲平衡定律的大型多维解
- 批准号:
1108994 - 财政年份:2011
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Long Time Behaviors of Large Solutions of Hyperbolic Balance Laws
双曲平衡定律大解的长期行为
- 批准号:
0505515 - 财政年份:2005
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似国自然基金
含重过渡与稀土元素的多金属配合物的磁、光性质研究
- 批准号:20371027
- 批准年份:2003
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
SCC-IRG Track 1: Fostering Smart and Sustainable Travel through Engaged Communities using Integrated Multidimensional Information-Based Solutions
SCC-IRG 第 1 轨道:使用基于信息的集成多维解决方案通过参与社区促进智能和可持续旅行
- 批准号:
2125390 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Development of an Internet-based Behavioral Pain Management Intervention
基于互联网的行为疼痛管理干预措施的开发
- 批准号:
8482009 - 财政年份:2013
- 资助金额:
$ 13万 - 项目类别:
Development of an Internet-based Behavioral Pain Management Intervention
基于互联网的行为疼痛管理干预措施的开发
- 批准号:
8990406 - 财政年份:2013
- 资助金额:
$ 13万 - 项目类别:
3/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
3/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8501691 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
3/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
3/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8666061 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8665498 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
1/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
精神分裂症及相关疾病多维数据的 1/3 网络
- 批准号:
8305366 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8501689 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
1/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
精神分裂症及相关疾病多维数据的 1/3 网络
- 批准号:
8501690 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8305318 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:














{{item.name}}会员




