Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的基本问题
基本信息
- 批准号:1813603
- 负责人:
- 金额:$ 27.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hyperbolic balance laws are important nonlinear systems of equations utilized in the description of the motion of fluids, gases, plasma, and waves. This project focuses on several fundamental and challenging questions concerning the validity and effectiveness of different fluid flow models, the dynamical stability of fluids and the behavior of large amplitude solutions, and the modeling of strong waves in one or multiple spatial dimensions, which often appear in realistic situations. This research aims to provide fresh insights and develop new tools to characterize complicated but interesting behavior driven by nonlinearity and resonances. Increased understanding of the behavior of solutions to these modeling equations will find important applications to the dynamics of compressible fluids, the mechanics of elastic materials, traffic control systems, porous medium flows, and geophysical dynamics. The project also involves international collaborations and training of graduate students and young researchers in this challenging field.This research project focuses on four goals: (1) To provide a clear picture of the global existence and finite-time blow-up for compressible Euler equations in one dimension with large initial data, and to find sharp density lower bound estimates for generic large solutions; (2) To establish a reasonable justification of the isentropic approximation in compressible fluids when initial entropy tends to a constant, for both inviscid and viscous fluids; (3) To investigate nonlinear Rayleigh-Taylor type instabilities in compressible fluids, including the compressible Navier-Stokes-Fourier system; (4) To study the large-time asymptotic behavior of compressible full Euler equations with frictional damping in three dimensions to justify Darcy's law, and to undertake the modeling and analysis of interactions between short waves and long waves in compressible fluids under the influence of magnetic fields. These research activities aim to provide a solid mathematical foundation to bridge gaps between existing results and for future studies. It is anticipated that the results will significantly advance basic understanding of nonlinear hyperbolic balance laws.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
双曲平衡律是用于描述流体、气体、等离子体和波的运动的重要的非线性方程组。该项目主要研究几个基本而具有挑战性的问题,涉及不同流体流动模型的有效性和有效性,流体的动力稳定性和大振幅解的行为,以及一维或多维空间中的强波模拟,这些都是现实中经常出现的。这项研究旨在提供新的见解和开发新的工具来表征由非线性和共振驱动的复杂但有趣的行为。进一步了解这些模型方程的解的行为将在可压缩流体动力学、弹性材料力学、交通控制系统、多孔介质流动和地球物理动力学中找到重要的应用。该项目还涉及到研究生和年轻研究人员在这个具有挑战性的领域的国际合作和培训。本研究项目集中于四个目标:(1)提供一维可压缩Euler方程的整体存在性和有限时间爆破的清晰图像,并找到一般大解的精确密度下界;(2)当初始熵趋于常数时,建立可压缩流体中等熵近似的合理理由,对于无粘性和粘性流体;(3)研究可压缩流体中的非线性Rayleigh-Taylor型不稳定性,包括可压缩的Navier-Stokes-Fourier系统;(4)研究三维具有摩擦阻尼项的可压缩全欧拉方程的大时间渐近行为,以证明达西定律的正确性,并对磁场作用下可压缩流体中短波和长波的相互作用进行模拟和分析。这些研究活动旨在为弥合现有成果和未来研究之间的差距提供坚实的数学基础。预计结果将大大促进对非线性双曲平衡定律的基本理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A polygonal scheme and the lower bound on density for the isentropic gas dynamics
- DOI:10.3934/dcds.2019172
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Geng Chen;R. Pan;Shengguo Zhu
- 通讯作者:Geng Chen;R. Pan;Shengguo Zhu
Stability and instability of the 3D incompressible viscous flow in a bounded domain
- DOI:10.1007/s00526-022-02205-8
- 发表时间:2022-03
- 期刊:
- 影响因子:2.1
- 作者:Fucai Li;R. Pan;Zhipeng Zhang
- 通讯作者:Fucai Li;R. Pan;Zhipeng Zhang
The sharp time decay rate of the isentropic Navier-Stokes system in {\mathop{\mathbb R\kern 0pt}\nolimits}^3
等熵纳维斯托克斯系统在 {mathop{mathbb Rkern 0pt}
olimits}^3 中的急剧时间衰减率
- DOI:10.3934/era.2020099
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Chen, Yuhui;Pan, Ronghua;Tong, Leilei
- 通讯作者:Tong, Leilei
Modeling Aurora Type Phenomena by Short Wave-Long Wave Interactions in Multidimensional Large Magnetohydrodynamic Flows
- DOI:10.1137/18m1175434
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:H. Frid;Daniel R. Marroquin;R. Pan
- 通讯作者:H. Frid;Daniel R. Marroquin;R. Pan
Global Classical Solutions of Three Dimensional Viscous MHD System Without Magnetic Diffusion on Periodic Boxes
- DOI:10.1007/s00205-017-1170-8
- 发表时间:2017-09
- 期刊:
- 影响因子:2.5
- 作者:R. Pan;Yi Zhou;Yi Zhu
- 通讯作者:R. Pan;Yi Zhou;Yi Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronghua Pan其他文献
Global smooth solutions in R3 to short wave-long wave interactions systems for viscous magnetohydrodynamic fluids
R3 中粘性磁流体动力流体短波-长波相互作用系统的全局平滑解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
HermanoFrid;Junxiong Jia;Ronghua Pan - 通讯作者:
Ronghua Pan
Antigen recognition
抗原识别
- DOI:
10.1016/s0952-7915(96)80115-4 - 发表时间:
1996 - 期刊:
- 影响因子:7
- 作者:
Qiuyun She;Ying;Dong Li;Ran An;Ting Zhou;Xiaoqi Nie;Ronghua Pan;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-004-0349-y - 发表时间:
2005-02-26 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Pierangelo Marcati;Ronghua Pan - 通讯作者:
Ronghua Pan
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo
循环外泌体 miR-493-3p 通过调节节段型白癜风表皮多巴胺浓度影响黑素细胞存活和功能
- DOI:
10.1016/j.jid.2022.05.1086 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Dong Li;Ting Zhou;Qiuyun She;Xiaoqi Nie;Zhong Liu;Ronghua Pan;Yujia Wei;Yunhua Deng - 通讯作者:
Yunhua Deng
Convergence Rate for Compressible Euler Equations with Damping and Vacuum
- DOI:
10.1007/s00205-002-0234-5 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Feimin Huang;Ronghua Pan - 通讯作者:
Ronghua Pan
Ronghua Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronghua Pan', 18)}}的其他基金
Several Fundamental Questions in Hyperbolic Balance Laws
双曲平衡定律的几个基本问题
- 批准号:
2108453 - 财政年份:2021
- 资助金额:
$ 27.92万 - 项目类别:
Continuing Grant
Large and Multi-Dimensional Solutions to Hyperbolic Balance Laws
双曲平衡定律的大型多维解
- 批准号:
1516415 - 财政年份:2015
- 资助金额:
$ 27.92万 - 项目类别:
Continuing Grant
Large and Multi-Dimensional Solutions of Hyperbolic Balance Laws with Dissipation
带耗散的双曲平衡定律的大型多维解
- 批准号:
1108994 - 财政年份:2011
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
Large and multidimensional solutions of hyperbolic balance laws
双曲平衡定律的大型多维解
- 批准号:
0807406 - 财政年份:2008
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
Long Time Behaviors of Large Solutions of Hyperbolic Balance Laws
双曲平衡定律大解的长期行为
- 批准号:
0505515 - 财政年份:2005
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
相似海外基金
Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
- 批准号:
ST/Y005848/1 - 财政年份:2024
- 资助金额:
$ 27.92万 - 项目类别:
Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
- 批准号:
480806 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
- 批准号:
2883720 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
- 批准号:
2319080 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226553 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
- 批准号:
480813 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
- 批准号:
487935 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
- 批准号:
2879630 - 财政年份:2023
- 资助金额:
$ 27.92万 - 项目类别:
Studentship