Advances in Bounded-Confidence Models on Networks

网络有限置信模型的进展

基本信息

  • 批准号:
    2109239
  • 负责人:
  • 金额:
    $ 20.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Due to the broad usage of social media and the ease of sharing content, it is crucial to apply novel strategies to understand the underlying mechanisms of online content dissemination. The principal investigator and her team tackle this problem by studying a class of mathematical models of opinion dynamics called bounded-confidence models. These models provide an excellent framework because they are relatively simple models with surprisingly rich dynamics, and they are grounded in research from social science. The theoretical advances in the early stages of this project will in the final stages provide a strategy for fitting these models to real data, which is an important development that has so far gone largely unexplored. This work will contribute to the understanding of the mechanisms that shape information dissemination, including the spread of misinformation. In addition, this project supports extensive undergraduate student involvement and research training.This research will be pursued from two complementary perspectives. First, using a combination of agent-based modeling and mean-field integro-differential equation models, the principal investigator and her team will study the effects of external forcing on networks where opinion states evolve via a synchronous-updating bounded-confidence mechanism. This allows for the characterization of the stationary states and bifurcations in the relevant order parameters. In parallel, the research team will study information cascades on networks using a novel twist on bounded-confidence mechanisms. The goal of this research is to provide insight into the study of competition, heterogeneity, and homophily on information dissemination and create a clear framework by which to compare these models with data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于社交媒体的广泛使用和内容共享的便利性,应用新的策略来理解在线内容传播的潜在机制至关重要。首席研究员和她的团队通过研究一类称为有界置信模型的意见动态数学模型来解决这个问题。这些模型提供了一个很好的框架,因为它们是相对简单的模型,具有令人惊讶的丰富动态,并且它们基于社会科学的研究。该项目早期阶段的理论进展将在最后阶段提供一种使这些模型与真实的数据相适应的策略,这是一项重要的发展,迄今为止基本上没有进行过探索。这项工作将有助于了解影响信息传播的机制,包括错误信息的传播。此外,本研究计划亦支持大学生广泛参与及研究训练。本研究将从两个互补的角度进行。首先,使用基于代理的建模和平均场积分微分方程模型的组合,首席研究员和她的团队将研究外部强迫对网络的影响,其中意见状态通过同步更新的有界置信机制演变。这允许在相关的顺序参数的定态和分叉的表征。与此同时,研究小组将使用一种新的有界置信机制来研究网络上的信息级联。该研究的目的是提供对信息传播的竞争、异质性和同质性的深入研究,并建立一个明确的框架,通过该框架将这些模型与数据进行比较。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Zinn-Brooks其他文献

Heather Zinn-Brooks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
  • 批准号:
    2341890
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
  • 批准号:
    DP240101743
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Discovery Projects
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Studentship
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
  • 批准号:
    2304698
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Universality Investigation of Subcritical Turbulent Transition in Wall-bounded Shear Flow and Development of Stochastic Model for Engineering Application
壁面剪切流中亚临界湍流转变的普遍性研究及工程应用随机模型的发展
  • 批准号:
    22KJ2814
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
  • 批准号:
    23K03103
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321463
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Mechanism design with decision making among bounded rational agents
有限理性主体决策的机制设计
  • 批准号:
    23K12453
  • 财政年份:
    2023
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了